
Carlos de la Guardia

Python Web
Frameworks

Carlos de la Guardia

Python Web Frameworks

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-93810-2

[LSI]

Python Web Frameworks
by Carlos de la Guardia

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Shiny Kalapurakkel
Copyeditor: Gillian McGarvey

Proofreader: Charles Roumeliotis
Interior Designer: David Futato
Cover Designer: Karen Montgomery

February 2016: First Edition

Revision History for the First Edition
2016-02-12: First Release
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python Web
Frameworks, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Introduction. v

1. Python Web Framework Landscape. 1
Web Framework List 3

2. Some Frameworks to Keep an Eye On. 31
Django 31
Flask 35
Tornado 40
Bottle 45
Pyramid 48
CherryPy 53

3. What’s the Right Framework for You?. 59
Don’t Look for Absolute Bests 59
Start by Defining Your Goals 61
Desirable Features 61

4. Developing Your Own Framework. 63
Why Create a Framework? 63
Parts of a Basic WSGI Framework 64
Framework Building Blocks 65
Some Useful Resources 66

5. Summary. 67

A. Python Web Development Fundamentals. 69

iii

Introduction

At the time of this writing, the web development landscape is domi‐
nated by JavaScript tools. Frameworks like ReactJS and AngularJS
are very popular, and many things that were previously done on the
server are handled on the client side by these frameworks. This is
not limited to the client. Server-side JavaScript frameworks like
NodeJS are also prominent.

Does that mean that languages like Python should throw in the
towel and forget about web applications? On the contrary. Python is
a very powerful language that is easy to learn and provides a fast
development pace. It has many mature libraries for web-related
tasks, from object-relational mapping (ORM) to web scraping.
Python is also a fabulous “glue” language for making disparate tech‐
nologies work together. In this era where JSON APIs and communi‐
cation with multiple systems are so important, Python is a great
choice for server-side web development. And it’s great for full-scale
web applications, too!

There are many web frameworks for Python; some provide more
facilities than others, some offer a greater degree of flexibility or
more extensibility. Some try to provide everything you need for a
web application and require the use of very specific components,
whereas others focus on giving you the bare minimum so that you
can pick only the components your application needs.

Among these frameworks, there are dozens that have a significant
number of users. How do newcomers to the language choose the
right one for their needs? The easiest criterion would probably be
popularity, and there are two or three frameworks that will easily be
found doing web searches or asking around. This is far from ideal,

v

however, and leaves the possibility of overlooking a framework that
is better suited to a developer’s needs, tastes, or philosophy.

In this report, we will survey the Python web framework landscape,
giving aspiring web developers a place to start their selection pro‐
cess for a web framework. We will look in some detail at a few of the
available frameworks, as well as give pointers about how to pick one,
and even how to go about creating your own.

Hopefully, this will make it easier for new developers to find what’s
available, and maybe give experienced Python developers an idea or
two about how other web frameworks do things.

What Do Web Frameworks Do?
A web application is not a standalone program but part of the web
“pipeline” that brings a website to a user’s browser. There’s much
more to it than your application code working under the hood to
make the web work, and having a good understanding of the other
pieces of the puzzle is key to being a good web developer. In case
you are new to web development or need a refresher, take a look at
Appendix A to get your bearings.

When writing a web application, in addition to writing the code that
does the “business logic” work, it’s necessary to figure out things like
which URL runs which code, plus take care of things like security,
sessions, and sending back attractive and functional HTML pages.
For a web service, perhaps we need a JSON rendering of the
response instead of an HTML page. Or we might require both.

No matter what our application does, these are parts of it that very
conceivably could be used in other, completely different applica‐
tions. This is what a web framework is: a set of features that are com‐
mon to a wide range of web applications.

Exactly which set of features a framework provides can vary a lot
among frameworks. Some frameworks offer a lot of functionality,
including URL routing, HTML templating systems, ORMs to inter‐
act with relational databases, security, sessions, form generation, and
more. These are sometimes referred to as full-stack frameworks.

Other frameworks, known by many as micro frameworks, offer a
much less varied set of features and focus on simplicity. They usually
offer URL routing, templating, and not much else.

vi | Introduction

This emphasis on size (micro and full-stack) can sometimes be con‐
fusing. Are we referring to the framework’s codebase? Are micro
frameworks for small applications and full-stack frameworks for
large applications? Also, not all frameworks easily fit into one of
these categories. If a framework has lots of features but makes most
of them optional, does that still count as full-stack?

From an experienced developer point of view, it could make sense to
examine frameworks in terms of decisions made. Many features
offered by frameworks, like which ORM it supports or which tem‐
plating system it’s bundled with, imply a decision to use that specific
tool instead of other similar components.

Obviously, the more decisions made by the framework, the less deci‐
sions the developer needs to make. That means more reliance on the
way the framework works, more knowledge of how its parts fit
together, and more integrated behavior—all within the confines of
what the web framework considers a web application. Conversely, if
a developer needs to make more decisions, they’ll have more work
to do, but they will also have more control over their application,
and can concentrate on the parts of a framework they specifically
need.

Even if the framework makes these decisions, most of them are not
set in stone. A developer can change these decisions, maybe by
replacing certain components or libraries. The trade-off is losing
some framework functionality in return for that freedom.

There are many Python web frameworks. Besides size and decisions
made for the developer, many of them offer unique features or spe‐
cial twists on what a web appplication should do. Some developers
will immediately feel attracted to some frameworks, or conclude
after some analysis that one of them is better suited for the specific
project they have in mind. Regardless of the chosen framework, it’s
always a good idea to be aware of the variety of other available
frameworks so that a better choice can be made if necessary.

Introduction | vii

CHAPTER 1

Python Web Framework
Landscape

There are many options for building web applications with Python.
Python’s powerful yet flexible nature makes it perfect for this task.
It’s a good idea to know what’s available before going in that direc‐
tion, though. Perhaps one of the many existing options will suit your
needs and save you a ton of work.

To make it easier to know at a glance what frameworks are out there,
the following list shows 30 web frameworks that are active and have
more than 1,000 monthly downloads at the time of this writing. For
each framework, the list presents the following information:

Slogan
This is a short phrase that comes from the framework’s site or
documentation and attempts to convey the spirit of the frame‐
work according to its creators.

Description
In a nutshell, what this framework is and why you should use it.

Author
Main author, according to Python Package Index.

Website
Official website of the framework, or code repository if no site is
available.

1

https://pypi.python.org/pypi

Relative popularity
A very crude attempt at gauging a project’s popularity, by nor‐
malizing the number of monthly downloads and generating a
score. Its purpose is only to give the reader a general idea about
how one framework compares to another in terms of number of
users. For example, Django, which is the Python framework
with the largest number of downloads, has 10 stars. At the other
end of the spectrum, BlueBream, which is barely above 1,000
downloads, has one star. This popularity scale should not be
taken too seriously.

Python versions
Shows the versions of Python that the framework runs on.

License
Shows the license under which the framework is distributed.

Documentation
This is a key part of any framework, because the more you know
about how to use it, the quicker you can get started and take
advantage of its features. Some people learn by example, so hav‐
ing tutorials and sample code can be very helpful too, both for
beginners and more advanced users. For each framework, docu‐
mentation is graded using a very simple scale: poor, adequate,
extensive, or comprehensive. Again, this is very subjective and
only meant as a simple guide to know what to expect.

Features
A short list of what the framework’s authors consider its best
features.

Other resources
This refers to resources other than web pages to get help and
information for a framework, like mailing lists and IRC chan‐
nels.

Persistence
Many web applications require a storage layer of some sort, usu‐
ally a database. Because of this, most web frameworks are
designed to use one or more specific data persistence options.

2 | Chapter 1: Python Web Framework Landscape

Templating
This is another very common feature of web frameworks. The
HTML markup for an application page is usually written in a
templating language.

Web Framework List

AppierAppier

Joyful Python Web App development.

Appier is an object-oriented Python web framework built for super-
fast app development. It’s as lightweight as possible, but not too
lightweight. It gives you the power of bigger frameworks, without
the complexity.
Author

Hive Solutions Lda.
Website

http://appier.hive.pt
Relative popularity

Python versions

2.6 to 3.5
License

Apache
Documentation

Adequate
Other resources

None
Persistence

MongoDB
Templating

Jinja2
Features

• REST dispatching
• JSON response encoding

Web Framework List | 3

http://appier.hive.pt

• Admin interface
• i18n

AspenAspen

A Python web framework that makes the most of the filesystem.
Simplates are the main attraction.

Aspen maps your URLs directly to the filesystem. It’s way simpler
than regular expression routing or object traversal.
Author

Gratipay, LLC
Website

http://aspen.io
Relative popularity

Python versions

2.6, 2.7
License

MIT
Documentation

Adequate
Other resources

IRC
Persistence

Any
Templating

Python, Jinja2, Pystache
Features

• Simplates: code and template in same file, with structure
• JSON helpers
• Filesystem-based URL mapping

4 | Chapter 1: Python Web Framework Landscape

http://aspen.io

BlueBreamBlueBream

The Zope Web Framework.

BlueBream is an open source web application server, framework,
and library created by the Zope community and formerly known as
Zope 3. It is best suited for medium to large projects split into many
interchangeable and reusable components.
Author

Zope Foundation and Contributors
Website

http://bluebream.zope.org
Relative popularity

*
Python versions

2.6, 2.7
License

ZPL
Documentation

Extensive
Other resources

Mailing list
Persistence

ZODB
Templating

ZPT
Features

• Built on top of Zope 3
• Full stack, but with distributed architecture
• Mature, well-tested components
• Object database

Web Framework List | 5

http://bluebream.zope.org

BoboBobo

Web application framework for the impatient.

Bobo is a lightweight framework for creating WSGI web applica‐
tions. Its goal is to be easy to use and remember.
Author

Jim Fulton
Website

http://bobo.digicool.com
Relative popularity

*
Python versions

2.6 to 3.5
License

ZPL
Documentation

Extensive
Other resources

Mailing list
Persistence

Any
Templating

Any
Features

• Subroutes for multiple-step URL matching
• JSON request bodies
• Automatic response generation, based on return value

BottleBottle

Fast and simple WSGI framework for small web applications.

Bottle is a fast, simple, and lightweight WSGI micro web framework
for Python. It is distributed as a single-file module and has no
dependencies other than the Python Standard Library.

6 | Chapter 1: Python Web Framework Landscape

http://bobo.digicool.com

Author

Marcel Hellkamp
Website

http://bottlepy.org
Relative popularity

Python versions

2.6 to 3.5
License

MIT
Documentation

Extensive
Other resources

Mailing list, IRC, Twitter
Persistence

Any
Templating

Simple templates, Jinja2, Mako, Cheetah
Features

• HTTP utilities
• Single file distribution

CherryPyCherryPy

A Minimalist Python Web Framework.

CherryPy allows developers to build web applications in much the
same way they would build any other object-oriented Python pro‐
gram.
Author

CherryPy Team
Website

http://www.cherrypy.org
Relative popularity

Web Framework List | 7

http://bottlepy.org
http://www.cherrypy.org

Python versions

2.6 to 3.5
License

BSD
Documentation

Comprehensive
Other resources

Mailing list, IRC
Persistence

Any
Templating

Any
Features

• Authorization, sessions, static content, and more
• Configuration system
• Plugin system
• Profiling and coverage support

ClasticClastic

A functional Python web framework that streamlines explicit
development practices while eliminating global state.

Clastic was created to fill the need for a minimalist web framework
that does exactly what you tell it to, while eliminating common pit‐
falls and delays in error discovery.
Author

Mahmoud Hashemi
Website

https://github.com/mahmoud/clastic
Relative popularity

*
Python versions

2.6, 2.7
License

BSD

8 | Chapter 1: Python Web Framework Landscape

https://github.com/mahmoud/clastic

Documentation

Basic
Other resources

None
Persistence

Any
Templating

Any
Features

• No global state
• Proactive URL route checking
• Improved middleware paradigm

CycloneCyclone

Facebook’s Tornado on top of Twisted.

Cyclone is a web server framework for Python that implements the
Tornado API as a Twisted protocol.
Author

Alexandre Fiori
Website

https://cyclone.io
Relative popularity

Python versions

2.6, 2.7
License

Apache
Documentation

Adequate
Other resources

None
Persistence

Twisted adbapi, redis, sqlite, mongodb

Web Framework List | 9

https://cyclone.io

Templating

Cyclone templates
Features

• Asyncio stack
• Command-line integration

DjangoDjango

The web framework for perfectionists with deadlines.

Django is a high-level Python Web framework that encourages rapid
development and clean, pragmatic design.
Author

Django Software Foundation
Website

https://djangoproject.com
Relative popularity

Python versions

2.6 to 3.5
License

BSD
Documentation

Comprehensive
Other resources

Mailing lists, IRC
Persistence

Django ORM
Templating

Django templates, Jinja2
Features

• Fully loaded: authentication, site maps, feeds, etc.
• Superbly documented
• Extensible admin interface
• Security-minded

10 | Chapter 1: Python Web Framework Landscape

https://djangoproject.com

FalconFalcon

An unladen web framework for building APIs and app backends.

Falcon is a minimalist, high-performance web framework for build‐
ing RESTful services and app backends with Python.
Author

Kurt Griffiths
Website

http://falconframework.org
Relative popularity

Python versions

2.6 to 3.5
License

Apache
Documentation

Extensive
Other resources

Mailing list, IRC
Persistence

Any
Templating

Any
Features

• Web service oriented
• Focused on performance

FantasticoFantastico

Pluggable, developer-friendly content publishing framework for
Python 3 developers.

Python 3 MVC web framework with built-in capabilities for devel‐
oping web services and modular web applications.

Web Framework List | 11

http://falconframework.org

Author

Radu Viorel Cosnita
Website

https://github.com/rcosnita/fantastico/
Relative popularity

*
Python versions

3.3, 3.4, 3.5
License

MIT
Documentation

Adequate
Other resources

None
Persistence

Fantastico ORM
Templating

Any
Features

• Extensible routing engine
• ORM
• Dynamic content generation

FlaskFlask

Web development one drop at a time.

A micro framework based on Werkzeug, Jinja2, and good intentions.
Author

Armin Ronacher
Website

http://flask.pocoo.org
Relative popularity

12 | Chapter 1: Python Web Framework Landscape

https://github.com/rcosnita/fantastico/
http://flask.pocoo.org

Python versions

2.6, 2.7, 3.3, 3.4, 3.5
License

BSD
Documentation

Comprehensive
Other resources

Mailing list, IRC
Persistence

Any
Templating

Jinja2
Features

• Built-in debugger
• RESTful request dispatching
• Allows modular applications with plugins
• Extensible

GiottoGiotto

Web development simplified. An MVC framework supporting
Python 3.

Giotto is a Python web framework. It encourages a functional style
where model, view, and controller code is strongly decoupled.
Author

Chris Priest
Website

http://giotto.readthedocs.org
Relative popularity

**
Python versions

2.7, 3.3, 3.4, 3.5
License

Own

Web Framework List | 13

http://giotto.readthedocs.org

Documentation

Adequate
Other resources

Google group
Persistence

SQLAlchemy
Templating

Jinja2
Features

• Generic views and models
• Functional CRUD patterns
• Automatic RESTful interface
• Automatic URL routing

GrokGrok

A smashing web framework.

Grok uses the Zope Component Architecture and builds on Zope
concepts like content objects (models), views, and adapters. Its sim‐
plicity lies in using convention over configuration and sensible
defaults when wiring components together.
Author

Grok Team
Website

http://grok.zope.org
Relative popularity

Python versions

2.6, 2.7
License

ZPL
Documentation

Extensive
Other resources

Mailing list

14 | Chapter 1: Python Web Framework Landscape

http://grok.zope.org

Persistence

ZODB
Templating

Zope page templates
Features

• Convention over configuration
• Takes advantage of full Zope toolkit
• Object-oriented database

kiss.pykiss.py

MVC web framework in Python with Gevent, Jinja2, and Werkzeug.
Author

Stanislav Feldman
Website

http://stanislavfeldman.github.io/kiss.py
Relative popularity

*
Python versions

2.6, 2.7
License

Own
Documentation

Poor
Other resources

None
Persistence

Pewee
Templating

Jinja2

Web Framework List | 15

http://stanislavfeldman.github.io/kiss.py

Features

• Integration with Gevent
• REST controllers
• Minified templates

KleinKlein

Werkzeug + twisted.web.

Klein is a micro framework for developing production-ready web
services with Python. It’s built on widely used and well-tested com‐
ponents like Werkzeug and Twisted.
Author

Amber Brown
Website

http://klein.readthedocs.org
Relative popularity

Python versions

2.6 to 3.5
License

MIT
Documentation

Adequate
Other resources

IRC
Persistence

Any
Templating

Twisted templates
Features

• Focus on web services
• Integrates Twisted concepts like deferreds

16 | Chapter 1: Python Web Framework Landscape

http://klein.readthedocs.org

MorepathMorepath

A micro web framework with superpowers.

Morepath is a Python WSGI micro framework. It uses routing, but
the routing is to models. Morepath is model-driven and flexible,
which makes it expressive.
Author

Martijn Faassen
Website

http://morepath.readthedocs.org/
Relative popularity

**
Python versions

2.6 to 3.5
License

BSD
Documentation

Extensive
Other resources

Mailing list, IRC
Persistence

Any
Templating

Any
Features

• Automatic hyperkinks that don’t break
• Generic UIs
• Simple, flexible permissions
• Easy to extend and override

Web Framework List | 17

http://morepath.readthedocs.org/

MuffinMuffin

Web framework based on Asyncio stack.

Muffin is a fast, simple, and asyncronous web framework for
Python 3.
Author

Kirill Klenov
Website

https://github.com/klen/muffin
Relative popularity

Python versions

2.6 to 3.5
License

MIT
Documentation

Poor
Other resources

None
Persistence

Any
Templating

Any
Features

• Asyncio stack
• Command-line integration

PylonsPylons

A framework to make writing web applications in Python easy.

Pylons 1.0 is a lightweight web framework emphasizing flexibility
and rapid development.

18 | Chapter 1: Python Web Framework Landscape

https://github.com/klen/muffin

Author

Ben Bangert, Philip Jenvey, James Gardner
Website

http://www.pylonsproject.org/projects/pylons-framework/
Relative popularity

Python versions

2.6, 2.7
License

BSD
Documentation

Extensive
Other resources

Mailing lists, IRC
Persistence

SQLAlchemy
Templating

Mako, Genshi, Jinja2
Features

• Uses existing and well-tested Python packages
• Extensible application design
• Minimalist, component-based philosophy

PyramidPyramid

The start small, finish big, stay finished framework.

Pyramid is a general, open source, Python web application develop‐
ment framework. Its primary goal is to make it easier for a Python
developer to create web applications.
Author

Chris McDonough, Agendaless Consulting
Website

https://trypyramid.com

Web Framework List | 19

http://www.pylonsproject.org/projects/pylons-framework/
https://trypyramid.com

Relative popularity

Python versions

2.6 to 3.5
License

BSD derived
Documentation

Comprehensive
Other resources

Mailing lists, IRC
Persistence

Any
Templating

Any
Features

• Powerful configuration system
• Overridable asset specifications
• Extensible templating
• Flexible view and rendering systems

TornadoTornado

A Python web framework and asynchronous networking library,
originally developed at FriendFeed.

A simple web framework with asynchronous features that allow it to
scale to large numbers of open connections, making it ideal for long
polling.
Author

Facebook
Website

http://www.tornadoweb.org
Relative popularity

Python versions

2.6 to 3.5

20 | Chapter 1: Python Web Framework Landscape

http://www.tornadoweb.org

License

Apache
Documentation

Adequate
Other resources

Mailing list, wiki
Persistence

Any
Templating

Tornado templates
Features

• Ideal for long-polling and websockets
• Can scale to tens of thousands of open connections

TurboGearsTurboGears

The web framework that scales with you.

TurboGears is a Python web framework based on the ObjectDis‐
patch paradigm. It is meant to make it possible to write both small
and concise applications in Minimal mode or complex applications
in Full Stack mode.
Author

TurboGears Release Team
Website

http://www.turbogears.org
Relative popularity

Python versions

2.6, 2.7
License

MIT
Documentation

Extensive

Web Framework List | 21

http://www.turbogears.org

Other resources

Mailing list, IRC, Google+
Persistence

SQLAlchemy
Templating

Genshi
Features

• From micro framework to full-stack applications
• Pluggable applications
• Widget system
• Horizontal data partitioning

TwistedTwisted

Building the engine of your Internet.

An extensible framework for Python programming, with special
focus on event-based network programming and multiprotocol
integration. Twisted includes twisted.web, a web application server
based on the concept of resources.
Author

Glyph Lefkowitz
Website

https://twistedmatrix.com
Relative popularity

Python versions

2.6 to 3.5
License

MIT
Documentation

Adequate
Other resources

Mailing list, IRC
Persistence

Any

22 | Chapter 1: Python Web Framework Landscape

https://twistedmatrix.com

Templating

twisted.web.template
Features

• Takes advantage of Twisted networking power
• Allows “spreadable” web servers (multiple servers answer

requests on same port)
• Can use any WSGI application as a resource

UliwebUliweb

Unlimited Python web framework.

Uliweb is a full-stacked Python-based web framework. It has three
main design goals: reusability, configurability, and replaceability. Its
functionality revolves around these goals.
Author

Limodou
Website

http://limodou.github.io/uliweb-doc/
Relative popularity

*
Python versions

2.6, 2.7
License

BSD
Documentation

Adequate
Other resources

Mailing list
Persistence

Uliorm
Templating

Uliweb

Web Framework List | 23

http://limodou.github.io/uliweb-doc/

Features

• Based on SQLAlchemy and Werkzeug
• Extensible
• Command-line tools

WatsonWatson

It’s elementary, my dear Watson.

A framework designed to get out of your way and let you code your
application rather than spend time wrangling with the framework. It
follows the “convention over configuration” ideal.
Author

Simon Coulton
Website

http://watson-framework.readthedocs.org
Relative popularity

*
Python versions

3.3, 3.4, 3.5
License

Own
Documentation

Adequate
Other resources

Mailing list
Persistence

Any
Templating

Jinja2
Features

• Event-based
• Dependency injection
• Form library

24 | Chapter 1: Python Web Framework Landscape

http://watson-framework.readthedocs.org

web.pyweb.py

Think about the ideal way to write a web app. Write the code to
make it happen.

web.py is a web framework for Python that is as simple as it is pow‐
erful.
Author

Anand Chitipothu
Website

http://webpy.org
Relative popularity

Python versions

2.6, 2.7
License

Public Domain
Documentation

Adequate
Other resources

Mailing list
Persistence

web.database
Templating

Templetor
Features

• Simple to use
• Own database and template libraries
• Form library

Web Framework List | 25

http://webpy.org

web2pyweb2py

Everything in one package with no dependencies.

Free open source full-stack framework for rapid development of
fast, scalable, secure, and portable database-driven web-based appli‐
cations.
Author

Massimo Di Pierro
Website

http://web2py.com
Relative popularity

*
Python versions

2.6, 2.7
License

LGPL 3
Documentation

Extensive
Other resources

Mailing list
Persistence

DAL
Templating

web2py
Features

• Requires no installation and no configuration
• Web-based IDE
• Everything included; no dependencies
• Always backward-compatible

26 | Chapter 1: Python Web Framework Landscape

http://web2py.com

webapp2webapp2

Taking Google App Engine’s webapp to the next level!

webapp2 is a lightweight Python web framework compatible with
Google App Engine’s webapp.
Author

Rodrigo Moraes
Website

http://webapp-improved.appspot.com/
Relative popularity

Python versions

2.6, 2.7
License

Apache
Documentation

Extensive
Other resources

Mailing list
Persistence

Google datastore
Templating

Jinja2, Mako
Features

• Compatible with webapp
• Better URI routing and exception handling
• Extras package with optional utilities

WebPagesWebPages

A Python web framework.

This project was designed for web developers who want to do more
in less time. To create a new project with Hello World and a database
connection, you only need a few minutes.

Web Framework List | 27

http://webapp-improved.appspot.com/

Author

Anton Danilchenko
Website

https://github.com/webpages/webpages
Relative popularity

*
Python versions

3.3, 3.4, 3.5
License

MIT
Documentation

Poor
Other resources

Facebook
Persistence

WebPages ORM
Templating

WebPages templates
Features

• Convention over configuration
• Settings per component
• User authentication out of the box
• ORM with simplified syntax

wheezy.webwheezy.web

Python’s fastest web framework.

A lightweight, high-performance, high-concurrency WSGI web
framework with the key features to build modern, efficient web
applications.
Author

Andriy Kornatskyy
Website

http://wheezyweb.readthedocs.org

28 | Chapter 1: Python Web Framework Landscape

https://github.com/webpages/webpages
http://wheezyweb.readthedocs.org

Relative popularity

Python versions

2.6 to 3.5
License

MIT
Documentation

Adequate
Other resources

None
Persistence

Any
Templating

Jinja2, Mako, Tenjin, Wheezy
Features

• High performance
• Authentication/authorization
• Model update/validation

Web Framework List | 29

CHAPTER 2

Some Frameworks to
Keep an Eye On

As we have seen, there are many Python web frameworks to choose
from. In fact, there are too many to be able to cover every one in
detail in this report. Instead, we will take a deeper look at six of the
most popular. There is enough diversity here to give the reader
some idea about how different frameworks work and what a web
application’s code looks like when using them.

For each framework, we are going to give a general description, dis‐
cuss some key features, look at some sample code, and talk a bit
about when it should be used. When possible, code for a simple
single-file application will be shown. Quick start instructions
assume Python and pip or easy_install are present on the system.
It is also recommended that you use virtualenv (or pyvenv for
Python 3.3+) to create an isolated environment for your application.
For simplicity, the examples do not show the setup of pip and vir
tualenv. See Appendix A for help with any of these tools.

Django
Django is without a doubt the most popular web framework for
Python at the time of this writing. Django is a high-level framework,
designed to take care of most common web application needs.

Django makes a lot of decisions for you, from code layout to secu‐
rity. It’s also very well documented, so it’s very easy to get a project

31

off the ground quickly. There are also many third-party applications
that can complement its many features nicely.

Django is very well-suited for database-driven web applications. Not
only does it include its own object-relational mapping (ORM), but it
can do automatic form generation based on the schemas and even
helps with migrations. Once your models are defined, a rich Python
API can be used to access your data.

Django also offers a dynamic administrative interface that lets
authenticated users add, change, and delete objects. This makes it
possible to get a nice-looking admin site up very early in the devel‐
opment cycle, and start populating the data and testing the models
while the user-facing parts of the application are taking shape.

In addition to all this, Django has a clean and simple way of map‐
ping URLs to code (views), and deals with things like caching, user
profiles, authentication, sessions, cookies, internationalization, and
more. Its templating language is simple, but it’s possible to create
custom tags for more advanced needs. Also, Django now supports
Jinja2, so there’s that option if you require a bit more powerful tem‐
plating.

Quick Start
To install Django:

$ pip install Django

Unlike the other frameworks discussed in this chapter, Django is a
full-stack framework, so we won’t show a code listing for a Hello
World application. While it’s possible to create a Django application
in a single file, this goes against the way Django is designed, and
would actually require more knowledge about the various frame‐
work pieces than a complete application.

Django organizes code inside a project. A project has a configura‐
tion, or settings, plus a set of URL declarations. Since Django is
intended for working with relational databases, the settings usually
include database configuration information. Inside the project, there
is a command-line utility, named manage.py, for interacting with it
in various ways. To create a project:

$ django-admin startproject mysite

32 | Chapter 2: Some Frameworks to Keep an Eye On

A project can contain one or more applications. An application is an
ordinary Python package where Django looks for some things. An
application can contain the database models, views, and admin site
registrations that will make your models be part of the automatic
admin interface. The basic idea in Django is that an application per‐
forms one defined task.

Representative Code
Django’s database integration is one of its strong suits, so let’s take a
look at a few examples of that.

Defining models
from django.db import models

class Author(models.Model):
 first_name = models.CharField(max_length=70)
 last_name = models.CharField(max_length=70)

 def __str__(self):
 return self.full_name

 @property
 def full_name(self):
 return '{} {}'.format(self.first_name, self.last_name)

class Book(models.Model):
 author = models.ForeignKey(Author)
 title = models.CharField(max_length=200)
 description = models.TextField()
 pub_date = models.DateField()

 def __str__(self):
 return self.title

A model contains data about one single part of your application. It
will usually map to a single database table. A model is defined in a
class that subclasses django.db.models.Model. There are several
types of fields, like CharField, TextField, DateField, etc. A model
can have as many fields as needed, which are added simply by
assigning them to attributes of the model. Relationships can be
expressed easily, like in the author field in the Book model above,
which uses a ForeignKey field to model a many-to-one relationship.

Django | 33

In addition to fields, a model can have behaviors, or “business logic.”
This is done using instance methods, like full_name in our sample
code. All models also include automatic methods, which can be
overriden if desired, like the __str__ method in the example, which
gives a unicode representation for a model in Python 3.

Registering models with the admin interface
from django.contrib import admin
from mysite.myapp.models import Book

class BookAdmin(admin.ModelAdmin):
 list_display = ['title', 'author', 'pub_date']
 list_filter = ['pub_date']
 search_fields = ['title', 'description']

admin.site.register(Book, BookAdmin)

To make your models appear in the Django admin site, you need to
register them. This is done by inheriting from django.con

trib.admin.ModelAdmin, customizing the display and behavior of
the admin, and registering the class, like we do in the last line of the
previous example. That’s all the code needed to get a polished inter‐
face for adding, changing, and removing books from your site.

Django’s admin is very flexible, and has many customization hooks.
For example, the list_display attribute takes a list of fields and
displays their values in columns for each row of books, rather than
just showing the result of the __str__() method. The hooks are not
just for display purposes. You can add custom validators, or define
actions that operate on one or more selected instances and perform
domain specific transformations on the data.

Views
from django.shortcuts import render

from .models import Book

def publication_by_year(request, year):
 books = Book.objects.filter(pub_date__year=year)
 context = {'year': year, 'book_list': books}
 return render(request, 'books/by_year.html', context)

34 | Chapter 2: Some Frameworks to Keep an Eye On

A view in Django can be a simple method that takes a request and
zero or more URL parameters. The view is mapped to a URL using
Django’s URL patterns. For example, the view above might be asso‐
ciated with a pattern like this:

url(r'^books/([0-9]{4})/$, views.publication_by_year)

This is a simple regular expression pattern that will match any four-
digit number after “books/” in the URL. Let’s say it’s a year. This
number is passed to the view, where we use the model API to filter
all existing books with this year in the publication date. Finally, the
render method is used to generate an HTML page with the result,
using a context object that contains any results that need to be
passed to the template.

Automated Testing
Django recommends using the unittest module for writing tests,
though any testing framework can be used. Django provides some
tools to help write tests, like TestCase subclasses that add Django-
specific assertions and testing mechanisms. It has a test client that
simulates requests and lets you examine the responses.

Django’s documentation has several sections dedicated to testing
applications, giving detailed descriptions of the tools it provides and
examples of how to test your applications.

When to Use Django
Django is very good for getting a database-driven application done
really quickly. Its many parts are very well integrated and the admin
site is a huge time saver for getting site administrators up and run‐
ning right away.

If your data is not relational or you have fairly simple requirements,
Django’s features and parts can be left just sitting there, or even get
in the way. In that case, a lighter framework might be better.

Flask
Flask is a micro framework. Micro refers to the small core of the
framework, not the ability to create single-file applications. Flask
basically provides routing and templating, wrapped around a few

Flask | 35

configuration conventions. Its objective is to be flexible and allow
the user to pick the tools that are best for their project. It provides
many hooks for customization and extensions.

Flask curiously started as an April Fool’s joke, but it’s in fact a very
serious framework, heavily tested and extensively documented. It
features integrated unit testing support and includes a development
server with a powerful debugger that lets you examine values and
step through the code using the browser.

Flask is unicode-based and supports the Jinja2 templating engine,
which is one of the most popular for Python web applications.
Though it can be used with other template systems, Flask takes
advantage of Jinja2’s unique features, so it’s really not advisable to do
so.

Flask’s routing system is very well-suited for RESTful request dis‐
patching, which is really a fancy name for allowing specific routes
for specific HTTP verbs (methods). This is very useful for building
APIs and web services.

Other Flask features include sessions with secure cookies, pluggable
views, and signals (for notifications and subscriptions to them).
Flask also uses the concept of blueprints for making application
components.

Quick Start
To install Flask:

$ pip install Flask

Flask “Hello World”

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run()

The Flask class is used to create an instance of a WSGI application,
passing in the name of the application’s package or module. Once we

36 | Chapter 2: Some Frameworks to Keep an Eye On

have a WSGI application object, we can use Flask’s specific methods
and decorators.

The route decorator is used to connect a view function with a URL
(in this case, the root of the site). This is a very simple view that just
returns a string of text.

Finally, we use the common Python idiom for executing some code
when a script is called directly by the interpreter, where we call
app.run() to start the development server.

Representative Code
Let’s look at a few examples of what Flask code looks like inside real
applications.

Per request connections
@app.before_request
def before_request():
 g.db = connect_db()

@app.teardown_request
def teardown_request(exception):
 db = getattr(g, 'db', None)
 if db is not None:
 db.close()

It’s common to need some resources present on a per request basis
such as service connections to things like redis, Salesforce, or data‐
bases. Flask provides various decorators to set this up easily. In the
example above, we assume that the connect_db method is defined
somewhere else and takes care of connecting to an already initial‐
ized database. Any function decorated with before_request will be
called before a request, and we use that call to store the database
connection in the special g object provided by Flask.

To make sure that the connection is closed at the end of the request,
we can use the teardown_request decorator. Functions decorated
with this are guaranteed to be executed even if an exception occurs.
In fact, if this happens, the exception is passed in. In this example,
we don’t care if there’s an exception; we just try to get the connection
from g, and if there is one, we close it.

Flask | 37

There’s also an after_request decorator, which gets called with the
response as a parameter and must return that or another response
object.

Sessions
from flask import Flask, session, redirect, url_for,
escape, request

app = Flask(__name__)

@app.route('/')
def index():
 if 'username' in session:
 return 'Logged in as %s' % escape(session['username'])
 return 'You are not logged in'

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 session['username'] = request.form['username']
 return redirect(url_for('index'))
 return render_template('login.html')

@app.route('/logout')
def logout():
 session.pop('username', None)
 return redirect(url_for('index'))

app.secret_key = 'A secret'

The session object allows you to store information specific to a user
from one request to the next. Sessions are implemented using secure
cookies, and thus need a key to be used.

The index view checks the session for the presence of a user name,
and shows the logged-in state accordingly. The login view is a bit
more interesting. It renders the login template if called with the GET
method, and sets the session username variable if called with POST.
The logout view simply removes the variable from the session, in
effect logging out the user.

Views
@app.route('/')
def show_entries():
 cur = g.db.execute(
 'select title, text from entries order by id desc')

38 | Chapter 2: Some Frameworks to Keep an Eye On

 entries = [dict(title=row[0], text=row[1])
 for row in cur.fetchall()]
 return render_template('show_entries.html', entries=entries)

@app.route('/add', methods=['POST'])
def add_entry():
 if not session.get('username'):
 abort(401)
 g.db.execute(
 'insert into entries (title, text) values (?, ?)',
 [request.form['title'], request.form['text']])
 g.db.commit()
 flash('New entry was successfully posted')
 return redirect(url_for('show_entries'))

Here we show how to define views. The route decorator that we saw
in the quickstart application is used to connect the add_entry
method with the /add URL. Note the use of the methods parameter
to restrict that view to POST requests.

We examine the session to see if the user is logged in, and if not,
abort the request. We assume that the request comes from a form
that includes the title and text parameters, which we extract from
the request to use in an insert statement. The request object refer‐
enced here has to be imported from flask, as in the sessions exam‐
ple.

Finally, a flash message is set up to display the change to the user,
and the browser is redirected to the main show_entries view. This
last view is simple, but it shows how to render a template, calling it
with the template name and the context data required for rendering.

Automated Testing
Flask exposes the Werkzeug test client to make testing applications
easier. It also provides test helpers to let tests access the request con‐
text as if they were views.

The documentation has a long section about testing applications.
The examples use unittest, but any other testing tool can be used.
Since Werkzeug is fully documented itself, there is very good infor‐
mation available about the test client too.

Flask | 39

When to Use Flask
Flask can be used to write all kinds of applications, but by design it’s
better for small- to medium-sized systems. It is also not ideal for
composing multiple applications, because of its use of global vari‐
ables. It’s especially good for web APIs and services. Its small core
allows it to be used as “glue” code for many data backends, and it’s a
very powerful companion for SQLAlchemy when dealing with
database-driven web applications.

Tornado
Tornado is a combination of an asynchronous networking library
and a web framework. It is intended for use in applications that
require long-lived connections to their users.

Tornado has its own HTTP server based on its asynchronous
library. While it’s possible to use the web framework part of Tornado
with WSGI, to take advantage of its asynchronous nature it’s neces‐
sary to use it together with the web server.

In addition to typical web framework features, Tornado has libraries
and utilities to make writing asynchronous code easier. Instead of
depending on callbacks, Tornado’s coroutines library allows a pro‐
gramming style more similar to synchronous code.

Tornado includes a simple templating language. Unlike other tem‐
plating languages discussed here, in Tornado templates there are no
restrictions on the kind of expressions that you can use. Tornado
also has the concept of UI modules, which are special function calls
to render UI widgets that can include their own CSS and JavaScript.

Tornado also offers support for authentication and security, includ‐
ing secure cookies and CSRF protection. Tornado authentication
includes support for third-party login systems, like Google, Face‐
book, and Twitter.

Quick Start
To install Tornado:

$ pip install tornado

40 | Chapter 2: Some Frameworks to Keep an Eye On

Tornado “Hello World”

import tornado.ioloop
import tornado.web

class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("Hello, world")

application = tornado.web.Application([
 (r"/", MainHandler),
])

if __name__ == "__main__":
 application.listen(8888)
 tornado.ioloop.IOLoop.current().start()

First, we define a request handler, which will simply write our “Hello
World” message in the response. A Tornado application usually con‐
sists of one or more handlers. The only prerequisite for defining a
handler is to subclass from the tornado.web.RequestHandler class.

To route requests to the appropriate handlers and take care of global
configuration options, Tornado uses an application object. In the
example above, we can see how the application is passed the routing
table, which in this case includes only one route. This route assigns
the root URL of the site to the MainHandler created above.

Once we have an application object, we configure it to listen to port
8888 and start the asynchronous loop to serve our application. Note
that there’s no specific association of the application object we cre‐
ated and the ioloop, because the listen call actually creates an HTTP
server behind the scenes.

Representative Code
Since Tornado’s asynchronous nature is its main feature, let’s see
some examples of that.

Synchronous and asynchronous code
from tornado.httpclient import HTTPClient

def synchronous_fetch(url):
 http_client = HTTPClient()
 response = http_client.fetch(url)
 return response.body

Tornado | 41

from tornado.httpclient import AsyncHTTPClient

def asynchronous_fetch(url, callback):
 http_client = AsyncHTTPClient()
 def handle_response(response):
 callback(response.body)
 http_client.fetch(url, callback=handle_response)

from tornado import gen

@gen.coroutine
def fetch_coroutine(url):
 http_client = AsyncHTTPClient()
 response = yield http_client.fetch(url)
 raise gen.Return(response.body)

In these three short examples, we can see how Tornado uses asyn‐
chronous calls and how that compares with the normal, synchro‐
nous calls that we would use in a WSGI application.

In the first example, we use tornado.HTTPClient to fetch a URL
from somewhere in the cloud. This is the regular case, and the syn
chronous_fetch call will not return until the client gets the response
back.

The second example uses the AsyncHTTPClient. The call will return
immediately after the fetch call, which is why Tornado can scale
more. The fetch method is passed a callback, which is a function
that will be executed when the client gets a response back. This
works, but it can lead to situations where you have to chain call‐
backs together, which can quickly become confusing.

For this reason, coroutines are the recommended way to write asyn‐
chronous code in Tornado. Coroutines take advantage of Python
generators to be able to return immediately with no callbacks. In the
fetch_coroutine method above, the gen.coroutine decorator
takes care of waiting without blocking for the client to finish fetch‐
ing the URL, and then passes the result to the yield.

Request handlers
class BaseHandler(tornado.web.RequestHandler):
 def get_current_user(self):
 return self.get_secure_cookie("user")

42 | Chapter 2: Some Frameworks to Keep an Eye On

class MainHandler(BaseHandler):
 def get(self):
 if not self.current_user:
 self.redirect("/login")
 return
 name = tornado.escape.xhtml_escape(self.current_user)
 self.render("hello.html", title="Welcome", name)

class LoginHandler(BaseHandler):
 def get(self):
 self.render("login.html", title="Login Form")

 def post(self):
 self.set_secure_cookie("user",
 self.get_argument("name"))
 self.redirect("/")

application = tornado.web.Application([
 (r"/", MainHandler),
 (r"/login", LoginHandler)],
 cookie_secret="__TODO:_GENERATE_A_RANDOM_VALUE_HERE__")

Since request handlers are classes, you can use inheritance to define
a base request handler that can have all the basic behavior needed
for your application. In BaseHandler in the previous example, the
get_current_user call will be available for both handlers defined in
the next example.

A handler should have a method for every HTTP method that it can
handle. In MainHandler, the GET method gets a look at the current
user and redirects to the login handler if it is not set (remember that
get_current_user is inherited from the base handler). If there’s a
user, its name is escaped before being passed to the template. The
render method of a handler gets a template by name, optionally
passes it some arguments, and renders it.

LoginHandler has both GET and POST methods. The first renders the
login form, and the second sets a secure cookie with the name and
redirects to the MainHandler. The Tornado handlers have several
utility methods to help with requests. For example, the
self.get_argument method gets a parameter from the request. The
request itself can be accessed with self.request.

Tornado | 43

UI modules
class Entry(tornado.web.UIModule):
 def embedded_css(self):
 return ".entry { margin-bottom: 1em; }"

 def render(self, entry, show_comments=False):
 return self.render_string(
 "module-entry.html", entry=entry,
 show_comments=show_comments)

UI modules are reusable UI widgets that you can use across your
application. They make it easy to design your page layouts using
independent components. UI modules subclass from tor

nado.web.UIModule and must include a render method. In the
example above, we define a UI module that represents a blog entry.

The render method can include arbitrary parameters, which usually
will be passed on to the module template, like in the example above.
A UI module can also include its own CSS and JavaScript. In our
example, we use the embedded_css method to return some CSS to
use for the entry class. There are also methods for embedding Java‐
Script and for pointing to CSS and JavaScript files.

Once the UI module is defined, we can call it within a template
with:

{ % module Entry(entry, show_comments=True) % }

Automated Testing
Tornado offers support classes for automated testing that allow
developers to test asynchronous code. It has a simple test runner,
which wraps unittest.main. It also has a couple of test helper func‐
tions.

Tornado’s test module is documented, but there is no specific tuto‐
rial or narrative section devoted to testing.

When to Use Tornado
Tornado is a bit different to the other web frameworks discussed
here, in that it goes hand in hand with asynchronous networking.
It’s ideal to use when you need websockets, long polling, or any
other kind of long-lived connections. It can also help you scale your

44 | Chapter 2: Some Frameworks to Keep an Eye On

application to tens of thousands of open connections, provided your
code is written to be asynchronous and nonblocking.

For more “regular” applications, like database-driven sites, using a
WSGI framework is probably a better choice. Some of those frame‐
works also include a lot of features that the Tornado web framework
does not have.

Bottle
Bottle is a true Python micro framework, in that it’s actually dis‐
tributed as a single file and has no dependencies outside of the
Python standard library. It’s lightweight and fast.

Bottle focuses on providing clean and simple URL routing and tem‐
plating. It includes utilities for many web development needs, like
access to form data, cookies, headers, and file uploads. It also
includes its own HTTP server, so you don’t need to set up anything
else to get your application running.

Even though its core is very small and it’s designed for small applica‐
tions, Bottle has a plugin architecture that allows it to be expanded
to fit more complex needs.

Quick Start
To install Bottle:

$ pip install bottle

Bottle “Hello World”

from bottle import route, run, template

@route('/hello/<name>')
def index(name):
 return template('Hello {{name}}!', name=name)

run(host='localhost', port=8080)

The Bottle quick start is very simple. The route decorator connects
the index method to the /hello/<name> URL. Here, name is part of
a dynamic route. Its value is added to the hello message using a sim‐
ple string template.

Bottle | 45

Note that there is some magic going on in this example, because
Bottle creates an application object the first time route is used. This
default application object is the one that is served when the web
server is run in the last line. It’s also possible to create a different
application object explicitly, by instantiating Bottle and assigning
the result to the new application. In that case, the run method is
passed to the application as the first argument.

Representative Code
Even though Bottle is minimalistic, it does have a few nifty features,
as the following examples show.

Simple template engine
% name = "Bob" # a line of python code
<p>Some plain text in between</p>
<%
 # A block of python code
 name = name.title().strip()
%>
<p>More plain text</p>

 % for item in basket:
 {{item}}
 % end

Bottle uses a fast, simple template language that accepts both lines
and blocks of Python code. Indentation is ignored so that code can
be properly aligned, but in exchange for that it’s necessary to add an
end keyword after a normally indented block, like the for loop
above.

Using hooks
from bottle import hook, response, route

@hook('after_request')
def enable_cors():
 response.headers['Access-Control-Allow-Origin'] = '*'

@route('/foo')
def say_foo():
 return 'foo!'

46 | Chapter 2: Some Frameworks to Keep an Eye On

@route('/bar')
def say_bar():
 return {'type': 'friendly', 'content': 'Hi!'}

Bottle supports after_request and before_request hooks, which
can be used to modify the response or request. In the example
above, we add a hook that will add a cross-origin resource sharing
(CORS) header to the response.

Once we define the hook, it will be used in all routes. This example
also shows how Bottle automatically converts a response to JSON
when the callback returns a dictionary, like say_bar above.

Wildcard filters
def list_filter(config):
 ''' Matches a comma separated list of numbers. '''
 delimiter = config or ','
 regexp = r'\d+(%s\d)*' % re.escape(delimiter)

 def to_python(match):
 return map(int, match.split(delimiter))

 def to_url(numbers):
 return delimiter.join(map(str, numbers))

 return regexp, to_python, to_url

app = Bottle()

app.router.add_filter('list', list_filter)

@app.route('/follow/<ids:list>')
def follow_users(ids):
 for id in ids:
 follow(id)

Bottle’s router supports filters to modify the value of a URL parame‐
ter before it’s passed to the corresponding callback. Default filters
include :int, :float, :path, and :re. You can add your own filters
to the router, like in the example above.

A filter can do anything, but has to return three things: a regular
expression string, a callable to convert the URL fragment to a
Python object, and a callable to turn a Python object into a URL
fragment. In the list_filter example, we will match a list of num‐
bers in the URL and pass the converted list to the callback.

Bottle | 47

The regexp matches a series of one or more numbers separated by a
delimiter. The to_python function turns them into integers, and the
to_url function uses str() to turn the numbers back to strings.

Next, we explicitly create an application, and use the add_filter
method of its router to include our filter. We can now use it in a
route expression, like we do in follow_users at the bottom of the
code.

Automated Testing
Bottle has no specific tools for testing applications. Its documenta‐
tion does not have a specific section devoted to testing, though it
does offer a couple of short recipes on how to do unit and functional
testing.

When to Use Bottle
If you are working on a small application or a prototype, Bottle can
be a good way to get started quickly and painlessly. However, Bottle
does not have many advanced features that other frameworks do
offer. While it’s possible to add these features and build a large appli‐
cation with Bottle, it is designed for small applications and services,
so you should definitely at least take a look at the larger frameworks
if you have a complex application in mind.

Pyramid
Pyramid is a general web application development framework. It’s
designed for simplicity and speed. One of its main objectives is to
make it possible to start small without having to have a lot of knowl‐
edge about the framework, but allow an application to grow organi‐
cally as you learn more about Pyramid without sacrificing
performance and organization to do so.

Pyramid focuses on the most basic web application needs: mapping
URLs to code, supporting the best Python templating systems, serv‐
ing static assets, and providing security features. In addition to that,
it offers powerful and extensible configuration, extension, and add-
on systems. With Pyramid, it’s possible to override and customize
core code and add-ons from the outside, making it ideal for reusable
subsystems and even specialized frameworks.

48 | Chapter 2: Some Frameworks to Keep an Eye On

Pyramid is the fruit of the merger between the Pylons and repoze.bfg
web frameworks. It is developed under the Pylons Project brand,
which sometimes causes some confusion with the old framework
name.

Quick Start
To install Pyramid:

$ pip install pyramid

Pyramid “Hello World”

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response

def hello(request):
 return Response('Hello World!')

if __name__ == '__main__':
 config = Configurator()
 config.add_route('hello_world', '/')
 config.add_view(hello, route_name='hello_world')
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 8080, app)
 server.serve_forever()

First, we define a view, using a function named hello. In Pyramid,
views can be any kind of callable, including functions, classes, and
even class instances. The view has to return a response (in this case,
just the text “Hello World!”).

To configure the application, Pyramid uses a configurator, to allow
structured and extensible configuration. The configurator knows
about several statements that can be performed at startup time, such
as adding a route and a view that will be called when the route
matches, as in the example above. Using a configurator might seem
like an extra step in this example, but the configuration system is
one of the things that make Pyramid a good fit for applications of
any size, and particularly good for evolving applications.

The last step is to create an app and serve it. The configurator allows
us to create the app using the make_wsgi_app statement. We then

Pyramid | 49

pass it on to a WSGI server. Pyramid doesn’t have its own server, so
in the example we use the simple server included with Python.

Representative Code
Pyramid has a few unique features, like view predicates, renderers,
and asset specifications. Take a look at the following examples.

View predicates
from pyramid.view import view_config

@view_config(route_name='blog_action',
 match_param='action=create', request_method='GET')
def show_create_page(request):
 return Response('Creating...')

@view_config(route_name='blog_action',
 match_param='action=create', request_method='POST')
def create_blog(request):
 return Response('Created.')

@view_config(route_name='blog_action',
 match_param='action=edit', request_method='GET')
def show_edit_page(request):
 return Response('Editing...')

@view_config(route_name='blog_action',
 match_param='action=edit', request_method='POST')
def edit_blog(request):
 return Response('Edited.')

The first thing to note in the example above is the use of the
view_config decorator to configure views. In the Pyramid quick
start example we used config.add_view for the same purpose, but
using the decorator is a way to get the view declarations near the
actual code they call.

Next, look at the different parameters passed in to the view decora‐
tor. What sets Pyramid’s view configuration system apart is that
unlike most frameworks, Pyramid lets developers use several pieces
of information from the request to determine which views will be
called by the view lookup mechanism. This is done by adding predi‐
cates to the view configuration. Think of a predicate as a True or
False statement about the current request.

A view configuration declaration can have zero or more predicates,
and all things being equal, the view that has more predicates that all

50 | Chapter 2: Some Frameworks to Keep an Eye On

evaluate to True will be called by the view lookup mechanism over
other views with fewer predicates. In other words, more specific
view configuration declarations have preference over less specific
ones.

For our example, this means that all four defined views will match
the same blog_action route (another useful Pyramid feature), but
the view lookup will look at the request method and at the request
parameters to find the correct view to call. For example, if the
request is using the POST method and there is a request parameter
named “action” and that parameter has the value “edit,” then the
edit_blog view will be called.

Renderers
from pyramid.view import view_config

@view_config(renderer='json')
def hello_world(request):
 return {'content':'Hello!'}

Instead of always returning some kind of response object or assum‐
ing that a view will return a template, Pyramid uses the concept of a
renderer for converting the result of the view to a response. When
using a renderer, the view can return a dictionary and Pyramid will
pass it to the renderer for generating the response.

In the example above, the view is configured with a “json” renderer,
which will turn the dictionary into a response with the correct
“application/json” content type header and a JSON body with the
dictionary value.

Out of the box, Pyramid supports string, json, and jsonp renderers.
All the supported templating add-ons for Pyramid also include a
renderer. It’s also very easy to create custom renderers. One benefit
of this approach is simplicity, because the view code can focus on
getting the correct result without worrying about generating the
response and adding headers. Views that use renderers are also
more easily tested, since simple unit tests will be enough to assert
that the correct values are returned. Also, because rendering a
response to HTML doesn’t assume a specific templating engine, it’s
possible to easily use several engines in the same application, just by
choosing the corresponding renderer (for example, “mako” or
“jinja2”).

Pyramid | 51

Asset specifications
from pyramid.view import view_config

@view_config(route_name='hello_world',
 renderer='myapp:templates/hello.jinja2')
def hello(request):
 return {'message': "Hello World!"}

Python web applications use many types of files in addition to
Python code, like images, stylesheets, HTML templates, and Java‐
Script code. These files are known as assets in Pyramid. An asset
specification is a mechanism for referring to these files in Python
code in order to get an absolute path for a resource.

In the example above, the renderer mentioned in the configuration
is in fact an asset specification that refers to a Jinja2 template that
can be found inside the myapp package. Asset specifications have
two parts: a package name, and an asset name, which is a file path
relative to the package directory. This tells Pyramid that the tem‐
plate to be used for rendering the view is the hello.jinja2 file inside
the templates directory in the myapp package. Pyramid resolves that
into an absolute file path, and passes it to the Jinja2 renderer for
generating the HTML.

Pyramid supports serving static assets, which use the same specifica‐
tions for pointing at the assets to be served. This mechanism allows
Pyramid to easily find and serve assets without having to depend on
configuration globals or template hierarchies, like other frameworks
do.

Asset specifications also make it possible to override any asset. This
includes template files, template directories, static files, and static
directories. For example, suppose the view declaration in the exam‐
ple is part of a reusable application that is meant to be mostly used
as is, but with a different look. Pyramid allows you to reuse the
entire application from another package and simply override the
template, without requiring that the application be forked. All that
would be needed is to add the following code to the customized
application’s configuration:

config.override_asset(
 to_override='myapp:templates/hello.jinja2',
 override_with=
 'another.package:othertemplates/anothertemplate.jinja2')

52 | Chapter 2: Some Frameworks to Keep an Eye On

Automated Testing
Pyramid has its own testing module for supporting tests. Like
other frameworks, it uses unittest in the documentation. Key Pyra‐
mid components, like the configurator, offer test helpers to simulate
some of their functionality.

Pyramid’s documentation includes a chapter about unit, integration,
and functional testing. The pyramid.testing module is also docu‐
mented, as are the various testing helpers. All official tutorials
include a testing section.

When to Use Pyramid
Pyramid is designed to be used for small to large applications, so
unlike some of the frameworks discussed here, size is not a criterion
for deciding on its use. Pyramid has a few features that work differ‐
ently from other frameworks, so being comfortable with those fea‐
tures is important if you want to use it.

Pyramid is very well-suited for writing extensible applications, and
is a very good candidate for writing domain-specific frameworks
due to its many extension points and override mechanisms.

CherryPy
CherryPy is the oldest framework discussed here. It is perhaps the
original Python micro framework, as it focuses on matching a URL
to some view, and leaves everything else to the developer. It does
include its own web server, so it can serve static content as well. In
addition, CherryPy has built-in tools for caching, encoding, ses‐
sions, authorization, and more.

CherryPy has a fine-grained configuration system, which allows sev‐
eral configuration settings to be modified. Global configuration is
separate from application configuration, so it’s possible to run sev‐
eral applications in one process, each with its own configuration.

CherryPy is designed to be extensible, and offers several mecha‐
nisms for extensions and hook points. Since it has its own server,
these extension points include server-wide functions outside of the
regular request/response cycle. This gives CherryPy an added level
of extensibility.

CherryPy | 53

Quick Start
To install CherryPy:

$ pip install cherrypy

CherryPy “Hello World”

import cherrypy

class HelloWorld(object):
 def index(self):
 return "Hello World!"
 index.exposed = True

cherrypy.quickstart(HelloWorld())

CherryPy applications are usually written as classes. The views of the
application are the methods of its class, but by default only explicitly
selected methods will be turned into views, or exposed, as CherryPy
calls it. In the example, we have a single class named HelloWorld,
with a single method in it that simply returns the text “Hello
World!”. The index method is explicitly exposed by setting that
attribute to True.

Then, we use the cherrypy.quickstart call to direct CherryPy to
host our application. By default, it will be accessible on http://
127.0.0.1:8080/.

Note that unlike other frameworks, CherryPy does not associate a
URL to a view using mappings or routes. By default, the index
method goes to “/”. Other exposed methods of a class are located by
using the method name as a URL segment. For example, a goodbye
method in the example above would be called by a request to http://
127.0.0.1:8080/goodbye (if exposed, of course). CherryPy does pro‐
vide other ways to handle parameters in routes.

Representative Code
Here are a couple of examples that showcase some of CherryPy’s
features.

REST API
 import random
 import string

54 | Chapter 2: Some Frameworks to Keep an Eye On

 import cherrypy

 class StringGeneratorWebService(object):
 exposed = True

 def GET(self):
 return cherrypy.session['mystring']

 def POST(self, length=8):
 some_string = ''.join(random.sample(string.hexdigits,
 int(length)))
 cherrypy.session['mystring'] = some_string
 return some_string

 if __name__ == '__main__':
 conf = {
 '/': {
 'request.dispatch':
 cherrypy.dispatch.MethodDispatcher(),
 'tools.sessions.on': True,
 }
 }
 cherrypy.quickstart(StringGeneratorWebService(), '/', conf)

First, we define a class. Instead of exposing every method individu‐
ally, we set exposed to True for the whole class, which exposes all its
methods. We define separate methods for each HTTP “verb.” They
are very simple. GET will get the latest generated string, and POST
will generate a new one. Note the use of cherrypy.session to store
information for the current user from request to request.

A REST API uses the request methods to decide which views to call
in an application. The default CherryPy dispatcher does not know
how to do that, so we need to use a different dispatcher. This is done
in the configuration dictionary that will be passed to cher

rypy.quickstart. As you can see, CherryPy already has a dis‐
patcher for this, so we just set it and everything will work.

JSON encoding and decoding
class Root(object):

 @cherrypy.expose
 @cherrypy.tools.json_in()
 def decode_json(self):
 data = cherrypy.request.json

 @cherrypy.expose

CherryPy | 55

 @cherrypy.tools.json_out()
 def encode_json(self):
 return {'key': 'value'}

These days, JavaScript is used extensively in web applications, and
JSON is the standard way to get information to and from JavaScript
applications. CherryPy has a simple way of encoding and decoding
JSON.

In the first example, we can treat a request as JSON using the cher
rypy.tools.json_in decorator. It attaches a “json” attribute to the
request, which contains the decoded JSON.

In the second example, we use the corresponding cher

rypy.tools.json_out decorator, which encodes the JSON and gen‐
erates the correct “application/json” header.

Tools
import time

import cherrypy

class TimingTool(cherrypy.Tool):
 def __init__(self):
 cherrypy.Tool.__init__(self, 'before_handler',
 self.start_timer)

 def _setup(self):
 cherrypy.Tool._setup(self)
 cherrypy.request.hooks.attach('before_finalize',
 self.end_timer)

 def start_timer(self):
 cherrypy.request._time = time.time()

 def end_timer(self):
 duration = time.time() - cherrypy.request._time
 cherrypy.log("Page handler took %.4f" % duration)

cherrypy.tools.timeit = TimingTool()

class Root(object):
 @cherrypy.expose
 @cherrypy.tools.timeit()
 def index(self):
 return "hello world"

It’s very common in a web application to need some code to be exe‐
cuted at some point for every request. CherryPy uses tools for that

56 | Chapter 2: Some Frameworks to Keep an Eye On

purpose. A tool is a callable piece of code that is attached into some
specific point of the request, or hook. CherryPy offers several hooks,
from the very beginning of the request until it is completed.

In the example, we define a tool for computing the time taken by a
request from start to finish. A tool needs an __init__ method to
initialize itself, which includes attaching to a hook point. In this
case, the tool is attached to the before_handler hook, which is pro‐
cessed right before the view is called. This starts the timer, saving the
start time as an attribute of the request.

After a hook is initialized and attached to the request, its _setup
method is called. Here, we use it to attach the tool to yet another
hook, before_finalize. This is called before CherryPy formats the
response to be sent to the client. Our tool will then stop the timer by
calculating the difference between the start and end times, and log‐
ging the result.

To initialize the tool, we instance it and add it as an attribute of cher
rypy.tools. We can now use it in our code by adding it as a decora‐
tor to any class method, like this: @cherrypy.tools.timeit().

Automated Testing
CherryPy provides a helper class for functional tests. It is a test case
class with some helpers. The documentation for this class is brief,
but includes an example.

When to Use CherryPy
CherryPy is a very flexible framework, which can be used in applica‐
tions of all kinds. The fact that it includes its own web server and
doesn’t have many dependencies makes it a good choice for shared
web hosting sites.

Though it’s very easy to get started with, CherryPy does leave in the
developer’s hands many of the tasks that some frameworks handle
for them. This is flexible but might require more work. Also, some
of its configuration and extensibility features need a more thorough
understanding, so beginners trying to use it right away for a big
undertaking might find its learning curve a bit steep.

CherryPy | 57

CHAPTER 3

What’s the Right Framework for
You?

By this point, you know a little bit about which Python web frame‐
works are out there, and even have a little in-depth knowledge about
some of them. Still, you might be wondering which one is best for
you. This is not a question that can be answered here to your satis‐
faction, because every reader of this guide will have different needs.
However, I can offer some general guidelines and answer a couple of
frequently asked questions by people new to Python web develop‐
ment.

Don’t Look for Absolute Bests
Recommending one framework over all of the others is not the pur‐
pose of this guide, but it’s possible to tell you which frameworks not
to look for. New web developers in community forums like reddit
usually start looking for one of these, and even if they could find it,
it would be the wrong approach to solving their specific problem.

The “Best” Framework
If you search the archives of Python web forums, you’ll find that this
question appears every couple of weeks. The thinking goes like this:
“Hey, if I’m going to get into web development, I should use the best
framework out there.” The problem is that there’s no one right
answer to this question.

59

That’s why this book contains a list of 30 frameworks and reviews
for half a dozen of them. The reality is that many frameworks could
be considered the “best,” depending on your specific objectives and
your preferred way of working. Picking one or two of the frame‐
works discussed here and trying them out to see if they are a fit for
the way you like to code is a much better use of your time than try‐
ing to find an undisputed champion.

The “Fastest” Framework
It’s not bad to look for speed in a framework, but making that your
main concern can get you off track easily. For example, it can make
you worry about deployment before you actually write a line of
code. Talk about putting the cart in front of the horse!

The truth is that for many applications, the web framework will sel‐
dom be the bottleneck, and even if you really need speed, it’s point‐
less to have that if the rest of the framework does not conform to
your requirements and objectives.

The “Smallest” Framework
When you have lots of programs that do more or less the same
thing, like web frameworks, it’s natural to try to classify them in
some way. In the Python web world, the terms full-stack framework
and micro framework are the most used categories these days. The
former refers to a framework with many integrated features, like ses‐
sions, authorization, authentication, templating, and database
access; the latter usually means a smaller but very focused frame‐
work that concentrates on the main things a web application must
do, like URL routing.

My advice would be, don’t get too caught up in taxonomies. It’s not
necessarily logical that “small” applications require small frame‐
works and “big” applications require large frameworks. For exam‐
ple, even if you know that you’ll just need a “small” application, you
might need several services that micro frameworks do not usually
offer, like integrated sessions and form handling. Conversely, you
could be writing a “large” application, but more in terms of business
logic than web requirements. Instead of worrying about size, focus
on the features you need.

60 | Chapter 3: What’s the Right Framework for You?

Start by Defining Your Goals
If there’s a lesson from the previous section, it’s that to find the right
framework for you, it’s better if you have a clear idea of what you are
trying to accomplish. Define your problem first, and then look for a
framework that seems well-suited for solving that problem and fits
the way you think.

Also, once you pick a framework for a project, it’s not as if you are
somehow bound by contract to always use that framework. You may
very well find that your next project requires a completely different
approach, where another framework might bring more to the table.

Desirable Features
While there’s no general checklist for finding the best framework for
your use case, there are indeed a few things that you can look for
that could simplify your work a lot. It would be wise to at least con‐
sider these points while you decide which framework to use.

Documentation
This is probably the single most important thing to look for in a
framework. Good documentation lets you get up to speed quickly
and start worrying about your application right away rather than
trying to find out how to use the framework’s features.

Bonus points if the documentation is well-written, easy to follow,
and offers a variety of resources, like tutorials, cookbooks, and vid‐
eos. People learn in different ways, and some resources, like tutori‐
als, are usually much better for beginners. A discussion of advanced
topics can be very useful once you start familiarizing yourself with
the framework and trying more ambitious things.

Good documentation also evolves with the framework, so new relea‐
ses should always cover new features; there are few things as frus‐
trating as having to deal with outdated documentation when trying
to pinpoint if a problem is in your code or in the way you are trying
to use the framework.

Start by Defining Your Goals | 61

Active Community
It’s a good idea to try to connect with the community of users and
developers of your framework of choice. There’s no better way to
gauge existing interest in the framework and get a feel for how much
development work is under way to make it better. Usually, frame‐
works will have some mix of mailing lists, IRC channels, and web
forums. For most frameworks, these communication channels will
also be the official support mechanism, so it pays to find out about
them.

An active community is not only a good way of finding out if a
framework is “alive” and current, but it can also be a very nice com‐
plement to the documentation. Finding out how people have used a
feature in real life can be as helpful as the description of the feature
itself.

Reliability
The Python language evolves, new ways of working with the Web
come around frequently, and the open nature of the Web means
constant attention needs to be paid to security considerations. A
reliable framework is one that tries to stay current with all of these
events. Look for versions that mention compatibility with newer
Python releases, take advantage of new libraries and ways of doing
things, and offer occasional security fixes or notices.

Extensibility
Once you become proficient in the use of a framework, there usually
comes a time when you need to add some functionality or feature
that is not already part of it, and in a way that can be easily main‐
tained and understood. If a framework offers well-designed and
documented extension points, it will be easier to adapt to your spe‐
cial requirements in a way that doesn’t break with version updates.
Also, it will be easier to take advantage of general extensions or plu‐
gins that other framework users have created.

62 | Chapter 3: What’s the Right Framework for You?

CHAPTER 4

Developing Your Own Framework

As the final step in our tour of Python web frameworks, we’ll look
briefly at how to develop your very own framework. Even if you
don’t plan to build one, knowing a bit about how the internals work
might be a good exercise.

Why Create a Framework?
The framework list in this report has 30 frameworks, and that’s just
the ones that have a significant(ish) number of downloads. There
are many more. Still, people keep creating frameworks, so you might
some day want to do that too. In fact, one of the reasons that there
are so many Python web frameworks is that it’s not very hard to cre‐
ate one. Python has very good building blocks for this, starting with
the WSGI standard and libraries like Werkzeug and WebOb that
already implement all of the plumbing, which can be used as a start‐
ing point.

Sometimes, instead of a general framework, you might need one
that is more tailored to your problem domain. It’s much easier to
start from a solid foundation, so you could consider basing your
special domain framework on an existing one. Frameworks that
have flexible configuration and extension mechanisms, like Pyramid
or CherryPy, lend themselves very well to this approach.

63

Parts of a Basic WSGI Framework
If you decide to build a framework, using Werkzeug or WebOb is a
good recommendation. You want to focus on the user-configurable
parts, not the internals.

Routing
You will need some way to match a URL to a view. The most com‐
mon way of doing this is using regular expression routes, like
Django or Flask. If you want to go for this approach, you should
consider using Werkzeug, which includes a routing system right out
of the box. There are also some routing libraries available on PyPI
that can be used with WebOb, or by themselves.

There are other ways to map URLs to views. Pyramid offers traver‐
sal, which treats your site’s content as a tree and maps views to
resources or types of resources. CherryPy uses exposed methods
from regular Python classes. Maybe you can think about other
approaches. Just use something that feels natural to you.

Templates
There are a couple of very popular template systems for Python, and
it’s highly recommended to use one of them. Jinja2 and Mako are
two very good options.

Some frameworks are highly tailored to work with a chosen tem‐
plate system, while others leave that decision completely in the
hands of the developer. Whatever your choice, you can’t go wrong,
as most of these template systems are proven and very stable.

Other Features
Most frameworks offer other features as part of the package.
Authentication is a common need and thus is usually provided for
in some way. There are many authentication systems and libraries
out there. The best advice here is to try to be flexible. You never
know how a user will need to authenticate their users.

Many frameworks make the assumption (perhaps less of a certainty
these days) that a relational database backend will be part of a web
application, and offer at least some degree of database support. If

64 | Chapter 4: Developing Your Own Framework

that’s your decision, simply go for SQLAlchemy integration. It’s the
most complete (and popular) solution for Python.

Consider offering some support for form handling and input valida‐
tion, but be aware that there are many libraries that do this very
well. Research your alternatives a bit before deciding to do it your‐
self.

If you intend for your framework to be used by other people, or at
least plan to use it more than once, you need to offer a configuration
system that allows your users to easily set up and deploy their appli‐
cations.

Documentation
Even if your framework is only for internal use at your company, do
your best to document it. In fact, if you can’t document it, it is better
to use one of the existing frameworks. Future maintainers of your
applications will thank you.

Good documentation consists of much more than class names and
methods. Some narrative documentation is very useful, and many
people find that code examples speak volumes. Beginners like tuto‐
rials and less technical explanations. Use a documentation tool, like
sphinx, to make documentation generation easier.

Framework Building Blocks
You don’t have to start your framework from scratch. There are a
couple of WSGI toolkits that take care of the basics, allowing you to
concentrate on the unique features provided by your framework.

The two most popular WSGI toolkits are WebOb and Werkzeug.
Many web frameworks use one of these libraries. They are time-
tested and fully featured, so they provide an excellent base for devel‐
oping web applications without worrying about the details of HTTP
and WSGI.

WebOb (http://webob.org)
WebOb provides objects that map much of the specified behavior of
HTTP, including header parsing, content negotiation, and correct
handling of conditional and range requests. Pyramid is one well-
known framework that uses WebOb.

Framework Building Blocks | 65

http://webob.org

Werkzeug (http://werkzeug.pocoo.org)
Werkzeug is one of the most advanced WSGI utility modules. It
includes a powerful debugger, fully featured request and response
objects, HTTP utilities to handle entity tags, cache control headers,
HTTP dates, cookie handling, file uploads, and a powerful URL
routing system. Flask, one of the most popular Python web frame‐
works, uses Werkzeug.

Some Useful Resources
If you do decide to write your own framework, or just want to know
a bit more about how to do it, there are some excellent web resour‐
ces that can show you how. Here are three of the best.

You can start with A Do-It-Yourself Framework, in which Ian Bicking
explains what WSGI is by building a simple framework. This is a
very good tutorial and a great way to find out what’s inside a real
framework.

Ian Bicking has a second tutorial, this time using the WebOb library.
Another Do-It-Yourself Framework has more details about a frame‐
work’s parts, and even goes line by line to explain the code.

Some people learn better using screencasts instead of written docu‐
mentation. If that’s your case, you’ll find Chris McDonough’s series
of screencasts about using repoze.bfg to build a micro framework
useful. Remember, repoze.bfg is the framework that became Pyra‐
mid. Even if you don’t use either of these frameworks, you should
still find this series very instructive. The videos are at http://
bfg.repoze.org/videos.

66 | Chapter 4: Developing Your Own Framework

http://werkzeug.pocoo.org
http://pythonpaste.org/do-it-yourself-framework.html
http://docs.webob.org/en/latest/do-it-yourself.html
http://bfg.repoze.org/videos
http://bfg.repoze.org/videos

CHAPTER 5

Summary

We have completed a very quick tour of the Python web framework
world. There are many Python web frameworks and we offered a
glimpse into a good number of them. We also covered six popular
frameworks in detail, which hopefully will tempt you to try one or
more of them on for size. Some general advice about how to pick a
framework and even build your own was given, but as always, the
best way to really know something is to try it yourself.

67

APPENDIX A

Python Web Development
Fundamentals

It’s All HTTP Underneath
When you are working with web applications, every operation is
ultimately reduced to a series of requests and responses between the
user’s browser and the server hosting the application, using the
HTTP protocol. While an introductory discussion of HTTP is out‐
side the scope of this book, it’s important for web developers to
know how it works.

From a web application standpoint, HTTP means getting requests
from a web browser for some URL that the application knows how
to handle, then processing this request and sending a response back.
This sounds easy, but there’s lots of stuff to do.

Imagine that we are writing an application that will do all this work
without depending on other libraries or frameworks. Our applica‐
tion needs to know how to interpret a request, decode any parame‐
ters that it contains, pass that information to the specific code in the
application that is supposed to be run for that URL, get a result
(preferably a nice HTML page with a beautiful design), encode that
into a response, and send it back to the server. All of this would
require writing code to handle each task.

Additionally, HTTP is a stateless protocol, which means no session
information is kept from request to request. Our application will
need some way to know if a user logs in or out, and make sure that

69

the correct information for each user is used where required. The
browser provides some tools to keep track of that on the client side,
but the application needs to do some work, and the available mecha‐
nisms are often not enough for many applications.

Our application also has to have a way to get requests from a web
server, as well as sending back a response. That means more code
will be needed to communicate with the web server. The actual logic
in our application begins to feel rather small compared to the work
required to make it work on the Web.

Web Servers and WSGI
When the Web started, a server only had to do one thing: get a file
from the path from the server root specified by the URL path.
HTML was just text, nothing more. Later, it became possible to add
images. Twenty years later, a single “web page” can pull in 50 or
more resources.

Along the way, servers began getting more complex and the Web
turned from a static content medium into a dynamic content gener‐
ation platform. First, there was the capability to perform simple
queries, then to run scripts via a mechanism known as CGI. Finally,
specialized protocols to run applications began to emerge.

In the Python world, things started moving very early on. Zope, the
first Python application server, was open sourced in 1998, when
opening up the code from a commercial project was still big news.
Zope was ahead of its time in many ways and, though it has become
less popular, it still survives and is in heavy use after all these years.

Zope was what we call a full-stack framework, which means it pro‐
vides the whole range of services discussed in the previous section,
and lots more. At the same time, other Python frameworks started
coming out, but they all interoperated with web servers in different
ways or used generic web server gateways that required some code
to interface. That meant that the choice of framework would limit
the choice of web servers and vice versa.

In 2003, a protocol named WSGI (Web Server Gateway Interface)
was proposed to provide a standard interface between web servers
and Python web applications. Inspired by the Java Servlet specifica‐
tion, the WSGI protocol took off after some time and is now the de
facto way to connect Python applications with web servers.

70 | Appendix A: Python Web Development Fundamentals

A server implementing the WSGI specification can receive a request,
pass it to the web application, and send the application’s response
back to the client. Applications can be stacked, so it’s possible to
have middleware that transforms the application response before it’s
returned.

Today, most Python web frameworks implement or support WSGI,
and there are some libraries and toolkits that make it easier to create
WSGI-compatible frameworks.

Installing Python Packages
When discussing some of the most notable frameworks back in
Chapter 2, there was a Quick Start section for each. For people who
don’t have previous experience with Python packaging, we include
some information about installing packages in this appendix.

For more information, consult the official Python packaging user
guide, located at http://bit.ly/1O2NiWu.

Requirements for Installing Packages
To be able to install Python packages, you need to install a few
requirements: pip, setuptools, and wheel.

Most likely, pip will already be installed on your system, but you will
need to upgrade it before use. On Linux or OSX, upgrade with:

pip install -U pip setuptools

For Windows, the command should be:

python -m pip install -U pip setuptools

After that, add wheel using:

pip install wheel

If possible, use a clean Python installation, rather than one managed
by your operating system’s package manager. Updates in that case
can become harder due to different OS development cycles.

Using pip
The recommended installer for Python is pip, and it is most fre‐
quently used to install packages from the Python Package Index. To
install a package:

Python Web Development Fundamentals | 71

http://bit.ly/1O2NiWu
https://pypi.python.org/pypi

pip install 'package'

It’s possible to install a specific version of a package, using:

pip install 'package==1.0'

It’s also possible to install several packages using a requirements file,
which is a text file where the required packages are listed, one pack‐
age specifier per line (that is, a package name or a name and version
expression):

pip install -r requirements.txt

Virtual Environments
A “virtual environment” for Python allows packages to be installed
in an isolated location, thus preventing version conflicts and unwan‐
ted upgrades. For example, an already working application could
require an earlier version of a popular library, but a new application
requires the newer version. With a single Python installation, you
risk affecting the application that is known to work fine when doing
the upgrade.

Virtual environments avoid this kind of conflict, allowing you to
have multiple “virtual” installations of the same Python version,
each with its own libraries and installation directories.

The most popular tool for creating virtual environments is virtua‐
lenv, which supports all active Python versions and includes pip and
setuptools by default on each virtual environment. Python 3.3 and
newer includes pyvenv, which performs a similar function.

Either of those tools makes it easy to create a virtual environment.
For virtualenv, virtualenv <directory> will set up a virtual environ‐
ment, including Python binaries, inside the chosen directory. For
pyvenv, pyvenv <directory> will do the same.

72 | Appendix A: Python Web Development Fundamentals

About the Author
Carlos de la Guardia has been doing web development with Python
since 2000. He loves the language and the communities around it.
He has contributed to Pyramid, SubstanceD, and other open source
projects.

	Cover
	Copyright
	Table of Contents
	Introduction
	What Do Web Frameworks Do?

	Chapter 1. Python Web Framework Landscape
	Web Framework List

	Chapter 2. Some Frameworks to Keep an Eye On
	Django
	Quick Start
	Representative Code
	Automated Testing
	When to Use Django

	Flask
	Quick Start
	Representative Code
	Automated Testing
	When to Use Flask

	Tornado
	Quick Start
	Representative Code
	Automated Testing
	When to Use Tornado

	Bottle
	Quick Start
	Representative Code
	Automated Testing
	When to Use Bottle

	Pyramid
	Quick Start
	Representative Code
	Automated Testing
	When to Use Pyramid

	CherryPy
	Quick Start
	Representative Code
	Automated Testing
	When to Use CherryPy

	Chapter 3. What’s the Right Framework for You?
	Don’t Look for Absolute Bests
	The “Best” Framework
	The “Fastest” Framework
	The “Smallest” Framework

	Start by Defining Your Goals
	Desirable Features
	Documentation
	Active Community
	Reliability
	Extensibility

	Chapter 4. Developing Your Own Framework
	Why Create a Framework?
	Parts of a Basic WSGI Framework
	Routing
	Templates
	Other Features
	Documentation

	Framework Building Blocks
	WebOb (http://webob.org)
	Werkzeug (http://werkzeug.pocoo.org)

	Some Useful Resources

	Chapter 5. Summary
	Appendix A. Python Web Development Fundamentals
	It’s All HTTP Underneath
	Web Servers and WSGI
	Installing Python Packages
	Requirements for Installing Packages
	Using pip
	Virtual Environments

	About the Author

