
From __future__ import Python

Picking a Python  
Version: A Manifesto

David Mertz



David Mertz

Picking a Python Version:
A Manifesto

From __future__ import Python



978-1-491-92697-0

[LSI]

Picking a Python Version: A Manifesto
by David Mertz

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Gillian McGarvey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2015:  First Edition

Revision History for the First Edition
2015-03-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491926970 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Picking a Python
Version: A Manifesto, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491926970


Table of Contents

Python Versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
The (Small) Break                                                                                2
Moving Forward                                                                                  3
Unix-Like Systems                                                                               4
Python 3 Uptake                                                                                  6
Is It Enough?                                                                                         9

Porting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
2to3                                                                                                      12
six.py                                                                                                    15
Python-Future                                                                                    16
Library Support                                                                                  18

Advantages of Python 3.x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Unicode Handling                                                                             23
The Greatly Improved Email and Mailbox Modules                    24
The concurrent.futures Module                                                      24
Coroutine Support and yield from                                                  25
The asyncio Module                                                                          25
Views and Iterators Everywhere                                                      26
Function Annotations                                                                       26
Other Things                                                                                      27

Other Implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
PyPy                                                                                                     29
PyPy-STM                                                                                           30
Jython                                                                                                  31

iii



IronPython                                                                                         32
Cython                                                                                                 33
Numba                                                                                                 34

Python Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
Continuum Analytics’ Anaconda                                                    37
Enthought’s Canopy                                                                          37
ActiveState’s ActivePython                                                               38

iv | Table of Contents



Python Versions

There are two major versions of the Python programming language:
the Python 2.x series, and the newer Python 3.x series. The Python
3.x series started with the release of Python 3.0 in December 2008;
since that time, Python 2.7 was released and has continued to
receive point version releases, with Python 2.7.9 being the latest ver‐
sion as of this writing. As a footnote, there was, naturally, a Python
1.x series that was highly successful in the 1990s, but that series has
long been out-of-maintenance.

In his 2014 PyCon keynote (Figure 1-1), Guido van Rossum,
Python’s Benevolent Dictator for Life (sometimes affectionately
called the BDFL or GvR) made it clear that the Python 2.x series will
not continue past Python 2.7.x. The end-of-life for Python 2.7.x is
2020, and no new features will be added to the 2.x series of Python.

Within a series, Python places an especially strong philosophical
emphasis on backward compatibility (in comparison to many other
programming languages). It is extremely rare for a series to break
this backward compatibility in later minor versions; in the few cases
where it has occurred, it is only to address large previously undis‐
covered bugs or security issues, and even then great attention is paid
to affecting as little running code as possible. That said, new Python
versions inevitably add important features, either in the language
itself, its built-in functions, or in standard library support modules.

1



Figure 1-1. Guido van Rossum’s PyCon 2014 keynote address (photo
credit: David Lesieur 2014, CC-BY-SA)

Python developers have numerous versions and implementations to
choose from. Many of us still use Python 2.x and CPython—and
that is still often a good choice—but there are many situations in
which making a different choice makes sense.

Python 3.x, and in particular the Python 3.5 version coming out
soon, offer numerous advantages over the Python 2.x series. New
development should typically be done using Python 3.x, and
although the 2020 end-of-life for Python 2.x isn’t all that close, it is
good for companies and projects to start think of porting plans for
existing code.

The (Small) Break
With the introduction of the so-called “Python 3000” version, which
was released after long deliberation as Python 3.0 and subsequent
Python 3.x versions, the designers deliberately allowed small lan‐
guage incompatibilities to be introduced in the new language series.
A full discussion of this is contained in a Python Enhancement Pro‐
posal: PEP 3000 - Python 3000. Even during the Python 2.x to 3.x
series transition, the philosophy of Python insisted on making

2 | Python Versions

http://bit.ly/1KRE4Bb


1 Fred Brooks, The Mythical Man-Month. Addison-Wesley, 1975.

changes as incremental as possible. Unlike in the histories of some
other programming language evolutions, Python 3.x was never
meant as a blue-sky project, and avoids the pitfalls of a “second-
system effect.”1 Python 3.x aims to improve a familiar Python 2.x
language rather than to create a new or fundamentally different lan‐
guage.

While there is a significant subset of Python code that is able to be
version-neutral “out of the box,” most existing codebases require a
small degree of rewriting and/or use of compatibility tools and libra‐
ries to move from Python 2.x to Python 3.x. Real-world code using
the most natural idioms in Python 2.x usually does various things
that are not quite compatible with Python 3.x, and the code that is
version-neutral must be written in a careful way to achieve that.
That is to say, if you wrote some module or script 10 years ago, it is
quite unlikely is will “just run” in Python 3.x with no changes.

Moving Forward
The bottom line is that Python 3.x is a better language than Python
2.x, albeit in a large collection of relatively small ways. But as with
any transition—especially one that introduces genuine backward
incompatibilities—it takes time to move users to the latest version.
To a lesser extent, this is true even within a series: there were (are)
certainly some few long-running and stable programs that ran
(probably still run) on Python 2.1—or even on Python 1.5.2—where
simply keeping the platform consistent was easier than testing a
transition. “If it ain’t broke, don’t fix it!”

However, going forward, new projects should be written for Python
3.x, and actively maintained old projects should transition between
versions or plan on doing so at the earliest opportunity. Still, even
after the 2020 end-of-life, executables already running will not sud‐
denly stop doing so (albeit, changes in underlying operatings sys‐
tems or in supporting hardware might require new versions, but
much the same upgrade issue exists for OSes as for programming
languages, and letting old systems “just run” is the same option in
both cases).

One issue to consider when moving to the latest version of Python is
simply what version of the language comes preinstalled with your

Moving Forward | 3



operating system, if any. Microsoft Windows® does not ship with any
real built-in developer tools or languages. Of course, Pythons—in
various versions and distributions—are free to download from
python.org and other sites (as are many other programming lan‐
guages and developer tools). Apple OS X® ships with Python 2.x pre‐
installed (in all recent versions; their future plans are confidential
and presumably strategic), so while freely available, installing
Python 3.x takes at least some extra effort. Linux® distributions have
traditionally shipped with Python 2.x installed, but increasingly the
latest versions of these “distros” use Python 3.x for all of their inter‐
nal tooling, ship with Python 3.x on their default media (either
exclusively or with both Python 3.x and Python 2.x included), and
generally encourage the use of Python 3.x. Of course, for many rea‐
sons similar to those discussed above, upgrading existing hardware
systems from older operating systems is itself an effort, and poses
risks of breaking existing programs and workflows.

Unix-Like Systems
PEP 394, entitled The “python” Command on Unix-Like Systems,
specifies the recommended configuration of Python on Unix-like
systems. This includes Linux distros, of course. It equally applies to
BSD-family Unix systems, such as FreeBSD®, OpenBSD™, NetBSD™,
and even to Apple OS X. Of course, while the Python Software
Foundation can make a recommendation via a PEP, no other entity
is bound to follow such recommendations (some do, some don’t).
The basic purpose of this recommendation is to govern the behavior
of files that use the “shebang convention”—that is, files that look at
the first few bytes of a file to see if they are an executable script by
seeing if they look like:

#!/path/to/executable

Or often indirectly as:

#!/usr/bin/env executable

In quick summary, PEP 394 recommends that within an installed
operating system environment:

• python2 will refer to some version of Python 2.x.
• python3 will refer to some version of Python 3.x.
• Currently, python will refer to the same target as python2.

4 | Python Versions

http://www.python.org
http://bit.ly/199a3fo


• Eventually, python will refer to the same target as python3.
• Python 2.x-only scripts should either be updated to be source

compatible with Python 3.x or use python2 in the shebang line.

While some currently shipping systems like Apple OS X only ship
with Python 2.x, others like Arch Linux™ ship with python aliased to
python3 already. In (almost) all cases, explicitly specifying python2
or python3 in the shebang line will resolve any ambiguity.

Python 3 on Fedora and Red Hat
Major Linux distributions generally follow the recommendation of
PEP 394, and furthermore, are moving at a consistent pace towards
general internal use of Python 3.x. For example, Fedora’s wiki docu‐
ments this effort:

The main goal is switching to Python 3 as a default, in which state:

• DNF is the default package manager instead of Yum, which
only works with Python 2

• Python 3 is the only Python implementation in the minimal
buildroot

• Python 3 is the only Python implementation on the LiveCD

• Anaconda and all of its dependencies run on Python 3

• cloud-init and all of its dependencies run on Python 3

Python 3 on Ubuntu
Ubuntu is following a similar path vis-à-vis Python versioning as is
Fedora (and Red Hat). Ubuntu’s wiki describes their goals:

For both Ubuntu and Debian, we have ongoing project goals to
make Python 3 the default, preferred Python version in the distros.
This means:

• Python 3 will be the only Python version installed by default.
Python 3 will be the only Python version in any installation
media (i.e. image ISOs)

• Only Python 3 will be allowed on the Ubuntu touch images.

• All upstream libraries that support Python 3 will have their
Python 3 version available in the archive.

Unix-Like Systems | 5

http://bit.ly/1GnTp5R
http://bit.ly/1Mqnrts


• All applications that run under Python 3 will use Python 3 by
default.

• All system scripts in the archive will use Python 3.

Ubuntu 14.04 LTS has recently been released. We made great pro‐
gress toward these goals, but we must acknowledge that it is a
daunting, multi-cycle process. A top goal for 14.04 was to remove
Python 2 from the touch images, and sadly we almost but didn’t
quite make it. There were still a few autopilot tests for which the
Python 3 ports did not land in time, thus keeping Python 2 autopi‐
lot support on the base touch image. This work is being completed
for Utopic and we expect to remove Python 2 from the touch
images early in the 14.10 cycle (actually, any day now).

Python 3 Uptake
It is difficult to know with any confidence just how widely used
Python 3.x is compared to Python 2.x. Indeed, it is not easy to know
how widely used Python is in general, either in absolute terms or
compared to other programming languages. For that matter, there
are many meanings one could give to “how widely used” to begin
with: how many local applications? How many servers? Serving how
many clients? How much CPU time used in the process? How
important are the various applications? How many lines of code in
the version? And so on.

Certainly Python in general is near the top of popular programming
languages if one looks at indices like the TIOBE Programming
Community Index, the Transparent Language Popularity Index, the
PYPL PopularitY of Programming Language, IEEE Spectrum’s 2014
Ranking, or The RedMonk Programming Language Rankings.

Being active in the Python community, and also being a director of
the Python Software Foundation, this writer has some access to
some rough indicators of Python version usage that while not confi‐
dential, also haven’t been widely published (mostly because of their
lack of statistical rigor). But a few points are suggestive.

Downloads from python.org
On the python.org website itself, downloads of 3.x versions started
outnumbering downloads of 2.x versions beginning in early 2013.
As discussed above, many operating system distributions come with
Python versions installed, so those probably do not need to be

6 | Python Versions

http://bit.ly/184JctZ
http://bit.ly/184JctZ
http://bit.ly/1aZSXRO
http://bit.ly/1BtauKN
http://bit.ly/1xaMfwQ
http://bit.ly/1xaMfwQ
http://bit.ly/1B0MQBr
http://www.python.org


downloaded from python.org. Moreover, one download from
python.org might result in anywhere from zero to tens of thousands
of installs on individual machines at companies. And furthermore,
other sites are free to, and many do, mirror Python archives, so not
all downloads are via python.org, even initially. Adding to that, and
discussed later in this paper, various third parties have created their
own Python distributions that include various other sets of “batter‐
ies included” beyond what the distributions provided by the PSF do.
So the indicator mentioned is very rough, but a positive suggestion
at least. (Figure 1-2 shows the python.org download menu.)

Figure 1-2. The download navigation menu of python.org

Downloads of third-party software and libraries from the Python
Package Index (PyPI) have the same caveats as those about the lan‐
guage itself. Many downloads from PyPI are automated ones done
by pip, easy_install, or other automated installers—including
many that are not Python-specific, such as apt-get, yum, port, and
brew (albeit, probably none of the non-Python installers listed
directly access PyPI, but use their own archives instead). Many
downloads are also done as part of automated testing of configura‐
tion as well, which may create inertia in repeatedly downloading
older packages within such automated scripts.

Downloads from the Python Package Index
In any case, the internal logs for PyPI suggest that downloads of
Python 3.x-specific packages remain below 25% of the downloads
from the site. It’s hard to know the exact reasons—a positive thought
is that this might be partially because Python 3.x is even more “bat‐
teries included” in the basic distribution than 2.x was, and hence
there is less need for third-party tools. However, likely that explana‐

Python 3 Uptake | 7



tion is overly Panglossian, and the new modules in Python 3.x have
only a small effect on the demand and use of third-party libraries
and tools. (Figure 1-3 shows PyPI’s navigation screen.)

Figure 1-3. The navigation screen of the Python Package Index

A 2013/2014 Survey
A survey was completed at the beginning of 2014 to gauge relative
usage, based on responses from postings on comp.lang.python,
python-dev, and hacker news. While still unscientific, the 2.x-
vs-3.x-survey might be of interest to readers:

Question Yes No

Have you ever written code in Python 2.x? 97.29% 2.48%

Have you ever written code in Python 3.x? 59.75% 39.83%

Do you currently write more code in Python 2.x than 3.x? 77.08% 21.63%

Do you think Python 3.x was a mistake? 22.36% 75.22%

Do you have dependencies keeping you on Python 2.x? 60.19% 37.75%

Have you ever ported code from Python 2.x to Python 3.x? 32.44% 66.37%

Have you ever written/ported code using 2to3? 16.03% 82.53%

Have you ever written/ported code using 3to2? 1.90% 96.60%

[…] code to run on Python 2.x and Python 3.x unmodified? 30.75% 68.08%

8 | Python Versions

http://bit.ly/1KREnM5
http://bit.ly/1E98ZSM
http://bit.ly/1HvlucB
http://bit.ly/199ajLh
http://bit.ly/199ajLh


Is It Enough?
There seems to be an ongoing perception in at least parts of the
Python community that projects are “stuck” on Python 2.x, whether
either widely used libraries or in-house codebases. This perception
is mostly false when it comes to widely used third-party libraries:
the large majority of the most important FLOSS support libraries
have Python 3.x-compatible versions today. Because some of those
library versions have been created relatively recently, perceptions of
the “ecosystem” not having moved to Python 3.x may simply reflect
infrequent review by developers of the overall snapshot of porting
statuses (it is a not inconsiderable project to conduct such a review
as it applies to one’s own large codebase).

Adoption of Python 3.x was also slowed somewhat by missteps in
Python 3.0 that were not fixed until Python 3.1. So there was not a
really good and stable Python 3.x version until mid-2009, in truth.
For applications that work intensively with text processing, the
benchmark version is probably even Python 3.3, because of the
improvements in PEP 393 - Flexible String Representation. That
release happened in September 2012. The variable-width storage of
unicode strings made for a big win in memory allocation and usage:

The memory usage of Python 3.3 is two to three times smaller than
Python 3.2, and a little bit better than Python 2.7, on a Django
benchmark (see the PEP for details).

More than the details of what improvements arrived on what dates
in the history of Python 3.x, what probably feeds many developers’
sense of being “stuck” is not any concrete large conceptual or infra‐
structure problem in porting, but simply the fact that it takes more
work to change versions—on a short-term basis—than it does to
leave things as they are within a large codebase.

Even adding some minor functionality, bug fix, kludge, or work‐
around to a large, in-house, Python 2.x codebase is less work today
than is porting (and more importantly, testing and validating that
port) to Python 3.x. The next problem would often have been solved
by the port, or at least much easier to address after it is made. But
today’s work is done now, and the next problem not addressed until
later. In corporations, profits and expenses are accounted for quar‐
terly; and even open source projects are also often constrained by

Is It Enough? | 9

http://bit.ly/1Hvlx8l


what is possible—or rewarding to volunteer developers—immedi‐
ately rather than what makes things better in the long term.

This writer’s take on migration to Python 3.x is that:

• Overall, the migration is inevitable.
• Some projects or long-running processes will make a decision

(often a reasonable one) to stick with what they know is stable
and works for their specific purpose until the code itself fades
from relevance.

• Migration is moving at a reasonable and steady pace, even if
slightly more slowly than I’d like to have seen.

• The release schedules and end-of-life dates are well timed for a
gradual and successful transition.

• In some ways, Python’s conservative philosophy of compatibility
and stability pushes against migration. Python 2.x has a long
maintenance period, and while the improvements in Python 3.x
really are great, intentionally none are revolutionary or funda‐
mental. Python got most things right from the start, and those
right choices haven’t been changed in Python 3.x. There is no
new paradigm here, just new capabilities.

• The sky isn’t falling, and there still isn’t ever going to be a
Python 2.8 (and neither are users going to abandon Python in
droves for some other language because of the minor transition
difficulties from Python 2.x to Python 3.x).

Python 3.5 Release Schedule
The current plan of record, documented in PEP 478, entitled Python
3.5 Release Schedule, sets the release date of Python 3.5.0 final as
September 13, 2015. As with other minor versions, Python 3.5 will
add several interesting and useful features. In general, this paper
takes a modestly forward-looking perspective. Where advantages
are discussed later, they extend through Python 3.5 but will not gen‐
erally differentiate exactly when in the Python 3.x series a feature
was introduced.

10 | Python Versions

http://bit.ly/1NEVbox


Porting

Several tools are available to somewhat automate porting of code
from Python 2.x to Python 3.x. Using any of these will generally
require some manual developer attention during the process, but in
many cases a fairly small degree of such attention.

There are two approaches to consider when porting code:

• Is this a one time transition? For in-house code, it is almost cer‐
tainly a better idea to make a clean break and commit to the
Python 3.x series (after sufficient testing, code review, etc.).
Even FLOSS libraries may want to make the jump as well, per‐
haps maintaining parallel versions for a certain period of time
(e.g., a Foolib and Foolib3 might both get updated for a while).

• Do you want to instead create a version-neutral codebase that
will run on both Python 2.x and Python 3.x? It is possible to use
compatibility shims to write such code while still fairly elegantly
falling back or falling forward with differences in features. How‐
ever, using these shims will probably require writing some code
in a manner less than the most idiomatic style for a Python ser‐
ies, at least at times.

Basically, if you want to make a clean break, use the tool 2to3 which
comes bundled with recent Python versions, in both series. If you
want to create version-neutral code, use the support libraries six or
Python-Futures. There was, for a while, a short-lived project called
3to2 to backport code already written for Python 3.x; however, it
has not been well maintained, and using it is not recommended.

11



2to3
The documentation for 2to3 - Automated Python 2 to 3 code transla‐
tion describes it as follows:

2to3 is a Python program that reads Python 2.x source code and
applies a series of fixers to transform it into valid Python 3.x code.
The standard library contains a rich set of fixers that will handle
almost all code. [The] 2to3 supporting library lib2to3 is, however,
a flexible and generic library, so it is possible to write your own fix‐
ers for 2to3. lib2to3 could also be adapted to custom applications
in which Python code needs to be edited automatically.

As a little experiment for this paper, I decided to take a look at my
long out-of-maintenance library Gnosis_Utils. I do not particularly
recommend using any part of this library, since most of the useful
things it did have been superceded by newer libraries. For the most
part, the library was always a teaching tool, and a way of publishing
examples and concepts that I discussed in my long-running column
for IBM developerWorks, Charming Python (albeit, I was pleased to
hear from many correspondents who used parts of it in real produc‐
tion systems, and to know it was included with some Linux and BSD
distributions). In particular, this library stopped being maintained
in 2006, and was probably last run by me using Python 2.5.

However, because of its age, it might make a good experiment in
porting. In its simplest mode, running 2to3 simply proposes a diff
to use in updating files. There are switches to perform the actions
automatically, and some others to limit which transformations are
performed. Let us look at what the tool might do in default mode:

% 2to3 Gnosis_Utils-1.2.2/gnosis/trigramlib.py
RefactoringTool: Skipping implicit fixer: buffer
RefactoringTool: Skipping implicit fixer: idioms
RefactoringTool: Skipping implicit fixer: set_literal
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Refactored Gnosis_Utils-1.2.2/gnosis/trigram-
lib.py
--- Gnosis_Utils-1.2.2/gnosis/trigramlib.py (original)
+++ Gnosis_Utils-1.2.2/gnosis/trigramlib.py (refactored)
@@ -1,6 +1,6 @@
"Support functions for trigram analysis"
-from __future__ import generators
-import string, cPickle
+
+import string, pickle

12 | Porting

http://bit.ly/1aZT8fW
http://bit.ly/1aZT8fW
http://gnosis.cx/publish/tech_index_cp.html


def simplify(text):
    ident = [chr(x) for x in range(256)]
@@ -17,13 +17,13 @@
    return " ".join(ts.text_splitter(text, casesensitive=1))

def simplify_null(text):
-    ident = ''.join(map(chr, range(256)))
+    ident = ''.join(map(chr, list(range(256))))
    return text.translate(ident, '\n\r')

def generate_trigrams(text, simplify=simplify):
    "Iterator on trigrams in (simplified) text"
    text = simplify(text)
-    for i in xrange(len(text)-3):
+    for i in range(len(text)-3):
        yield text[i:i+3]

def read_trigrams(fname):
@@ -31,7 +31,7 @@
        trigrams = {}
        for line in open(fname):
            trigram = line[:3]
-            spam,good = map(lambda s: int(s,16), 
line[3:].split(':'))
+            spam,good = [int(s,16) for s in 
line[3:].split(':')]
            trigrams[trigram] = [spam,good]
        return trigrams
    except IOError:
@@ -39,25 +39,25 @@

def write_trigrams(trigrams, fname):
    fh = open(fname,'w')
-    for trigram,(spam,good) in trigrams.items():
-        print >> fh, '%s%x:%x' %(trigram,spam,good)
+    for trigram,(spam,good) in list(trigrams.items()):
+        print('%s%x:%x' %(trigram,spam,good), file=fh)
    fh.close()

def interesting(rebuild=0):
    "Identify the interesting trigrams"
    if not rebuild:
        try:
-            return cPickle.load(open('interesting-
trigrams','rb'))
+            return pickle.load(open('interesting-
trigrams','rb'))
        except IOError:
            pass
    trigrams = read_trigrams('trigrams')
    interesting = {}

2to3 | 13



-    for trigram,(spam,good) in trigrams.items():
+    for trigram,(spam,good) in list(trigrams.items()):
        ratio = float(spam)/(spam+good)
        if spam+good >= 10:
            if ratio < 0.05 or ratio > 0.95:
                interesting[trigram] = ratio
-    cPickle.dump(interesting, open('interesting-
trigrams','wb'), 1)
+    pickle.dump(interesting, open('interesting-
trigrams','wb'), 1)
    return interesting

RefactoringTool: Files that need to be modified:
RefactoringTool: Gnosis_Utils-1.2.2/gnosis/trigramlib.py

Everything suggested here will produce valid Python 3.x code, and
applying the diff is completely sufficient to do so. But a few of the
suggestions are neither idiomatic nor necessary. For example:

- ident = ''.join(map(chr, range(256)))
+ ident = ''.join(map(chr, list(range(256))))

Since the built-in function range() has become lazy (like xrange()
was in Python 2.x), 2to3 conservatively shows us how to create a
concrete list. In almost all contexts, lazy is not only acceptable, but
even superior in performance (it doesn’t matter for range(256), but
it might for range(1000000000)).

On the other hand, some of the suggestions 2to3 makes are actually
to change constructs that are compatible with Python 3.x but simply
not idiomatic, nor as elegant. For example:

- spam,good = map(lambda s: int(s,16), line[3:].split(':'))
+ spam,good = [int(s,16) for s in line[3:].split(':')]

The existing line will still work correctly in Python 3.x, but using a
list comprehension is more idiomatic and more readable than using
map(lambda s: ..., ...).

Past merely working after taking or ignoring such a list of proposed
changes by an informed developer, the next step in a high-quality
port is a more systematic code review. Not just “What is the syntac‐
tic way to do this?”, but also “Are there standard library modules or
new constructs that do this faster? Or more generally? Or more cor‐
rectly? Or using less code and/or more readable code?” The answer
to these questions is often yes—but then, that answer is often yes
within a version series, or simply when new eyes look at old code.

14 | Porting



Getting code simply to the level of working correctly is usually as
simple as running 2to3 and applying its recommendations. Further
improvements can be done incrementally, and as time and require‐
ments permit.

six.py
The documentation for Six: Python 2 and 3 Compatibility Library
describes it as follows:

Six provides simple utilities for wrapping over differences between
Python 2 and Python 3. It is intended to support codebases that
work on both Python 2 and 3 without modification. [S]ix consists
of only one Python file, so it is painless to copy into a project.

There are a variety of constructs that differ between Python 2.x and
3.x, but it is often possible to wrap the basic functionality in a func‐
tion, class, or method that abstracts away the difference (perhaps by
explicitly detecting interpreter version and branching). The effect is
that in version-neutral code using six.py, one frequently utilizes
calls of the six.do_something(...) sort as the way of doing the
close-enough-to-equivalent thing under whichever Python version
the program runs in.

For example, almost certainly the most obvious difference between
Python 2.x and Python 3.x—especially for beginners—is that the
print statement has been replaced by the print() function. What
six gives users is a function six.print_() to use everywhere. In
Python 3.x, it is simply an alias for the built-in print() while in
Python 2.x it reimplements the behavior of that function (with the
various keyword arguments). So, for example, where 2to3 would
suggest this change:

- print >>fh, '%s%x:%x' % (trigram, spam, good)
+ print('%s%x:%x' % (trigram, spam, good), file=fh)

The version-neutral change would use:

six.print_('%s%x:%x' % (trigram, spam, good), file=fh)

Python 2.7.x has itself already backported many things—where it is
possible to do so without breaking compatibility. So in some cases
six is useful instead for supporting even earlier versions of Python
2.x. For example, this is probably what you’d actually do if you only
cared about supporting Python 2.7.x and Python 3.x:

six.py | 15

http://pythonhosted.org/six/


from __future__ import print_function
import sys
print("Hello error world", file=sys.stderr, sep=" ")

Use of six.print_(), however, lets your program run even on
Python 2.4. In a similar vein:

six.get_function_globals(func)
   Get the globals of func. This is equivalent to func.__glob
als__
   on Python 2.6+ and func.func_globals on Python 2.5.

Likewise, in an arguably more obscure case, the way metaclasses are
declared changed between Python 2.x and 3.x; six abstracts that
also:

import six
@six.add_metaclass(Meta)
class MyClass(object):
   pass

Which is equivalent to Python 3.x’s:

class MyClass(object, metaclass=Meta):
   pass

Or on Python 2.6+ to:

class MyClass(object):
   __metaclass__ = Meta

But to support Python 2.5 and earlier, you would have to use
instead:

class MyClass(object):
   pass
MyClass = six.add_metaclass(Meta)(MyClass)

The effect, however, of writing version-neutral code using six.py is
that you wind up writing code that is not particularly idiomatic for
either Python 2.x or Python 3.x, but instead winds up utilizing many
functions in the six module rather than native syntax or built-ins.

Python-Future
The documentation for Python-Future describes it as follows:

python-future is the missing compatibility layer between Python 2
and Python 3. It allows you to use a single, clean Python 3.x-
compatible codebase to support both Python 2 and Python 3 with
minimal overhead.

16 | Porting

http://bit.ly/1xaMBn6


It provides future and past packages with backports and forward
ports of features from Python 3 and 2. It also comes with futurize
and pasteurize, customized 2to3-based scripts that helps you to
convert either Py2 or Py3 code easily to support both Python 2 and
3 in a single clean Py3-style codebase, module by module.

Python-Future is cleaner than is six.py, but it does so in part by not
attempting to support early versions within the Python 2.x series—
and to some degree also ignoring early versions in the Python 3.x
series. The core developers of Python have added a number of con‐
venience in Python 2.7.x, and in Python 3.3+ to bring the two closer
to compatibility. For example, Python 2.7.x allows importing from
__future__ to change the behavior of the interpreter to be more like
Python 3.x. For example:

from __future__ import (absolute_import,
                        division,
                        print_function)

Mind you, adding this line can—and probably will—break existing
code that runs in a module that previously lacked that line; import‐
ing from the future is at least a step towards an actual 2to3 conver‐
sion (in fact, using those two techniques together is often a good
idea; i.e., you can modernize your Python 2.7.x code but not yet
actually move to Python 3.x).

In the other direction, PEP 414, entitled Explicit Unicode Literal for
Python 3.3, added so-called unicode literals to Python 3.x. Notice
that this is purely a compatibility convenience, in Python 3.3+, there
is absolutely no difference in meaning between "Foobar" and u"Foo
bar" because all strings are unicode already. But it lets Python 2.x
code that uses the unicode literals run on Python 3.3+ (obviously,
assuming other features are converted or shimmed, as needed).

Using Python-Future does not preclude you from also using six.py.
In fact, the Python-Future documentation recommends using the
following lines at the top of modules:

import future        # pip install future
import builtins      # pip install future
import past          # pip install future
import six           # pip install six

The module builtins is especially interesting: it provides Python
2.x implementations of Python 3.x built-ins that either behave dif‐
ferently or simply do not exist in Python 2.7.x. So often, along with

Python-Future | 17

http://bit.ly/1FG4Vth


the from __future__ import ... line, a “futurized” application
will contain a line like this:

from builtins import (bytes, str, open, super, range,
                     zip, round, input, int, pow, object)

Under Python 3.x, this will have no effect, but under Python 2.x,
familiar functions will have enhanced behaviors. Along a similar
line, the futures.standard_library submodule also makes Python
2.x more like Python 3.x:

>>> from future import standard_library
>>> help(standard_library.install_aliases)
Help on function install_aliases in module
future.standard_library:

install_aliases()
   Monkey-patches the standard library in Py2.6/7 to provide
   aliases for better Py3 compatibility.

Moreover, Python-Future combines the approaches of 2to3 with
six.py in some ways, in particular, the tool futurize that comes
with it does a conversion of code like 2to3 does, but the result is ver‐
sion neutral, and yet still generally idiomatic for Python 3.x (some‐
what unlike with six.py).

In some cases, it is also possible to automatically utilize modules
written for Python 2.x within Python 3.x programs without explic‐
itly saving futurize or 2to3 (or manually) converted files first. For
example:

from past import autotranslate
autotranslate(['useful_2x_only'])
import useful_2x_only

The autotranslate() function is still in alpha at the time of this
writing, so (as with all changes) be sure to test after utilizing it.

Library Support
Most major libraries have been ported to Python 3.x as of the time
of this writing. This paper cannot be exhaustive in listing popular
libraries that already support Python 3.x, nor in discussing ones that
do not have that support—there are hundreds or thousands in each
category. Some “big name” libraries that are available are listed
below. Of course, there remain—and indeed, always will remain,
some libraries that do not get ported; if non-ported libraries are

18 | Porting



essential to the task you need to do, that is an obstacle. Of course,
you might address that obstacle by:

1. Sticking with Python 2.x.
2. Porting the needed support library yourself.
3. Finding a suitable substitute library covering the same general

domain.

Still, among libraries already well supported in Python 3.x are the
following:

• Web frameworks
— django
— flask
— bottle
— pyramid
— Jinja2
— tornado

• Numeric/scientific
— NumPy
— SciPy
— pandas
— SimPy
— matplotlib

• Cryptography
— pycrypto
— ssl
— rsa

• Network
— requests
— httplib2
— gunicorn
— pyzmq
— pycurl

Library Support | 19



• Database
— psycopg2
— redis
— pymongo
— SQLAlchemy

• Environments
— idle
— IPython
— IPython Notebook
— virtualenv

• Data formats
— lxml
— simplejson
— anyjson
— PyYaml
— Sphinx
— pyparsing
— ply

• Testing
— nose
— coverage
— mock
— pyflakes
— pylint
— pytest
— WebTest

• Concurrency
— greenlet

20 | Porting



Some likely obstacles include:

• Twisted. Many, but definitely not all, of the capabilities in this
framework have been ported. See the wiki entry for Plan/
Python3 – Twisted.

• Mechanize.
• Scrapy.

The list here is, of course, somewhat subjective and impressionistic.
The tools or libraries this writer is most familiar with are not neces‐
sarily the ones that matter most to you.

Library Support | 21

http://bit.ly/1BnpbQx
http://bit.ly/1BnpbQx




Advantages of Python 3.x

A pretty thorough overview of improvements to Python 3.x versions
is contained in the series of “What’s new in Python N.m" documents.
Each document focuses on the improvements that were made since
the prior minor version, rather than globally what’s new in the his‐
tory of Python.

• What’s New in Python 3.0
• What’s New In Python 3.1
• What’s New In Python 3.2
• What’s New In Python 3.3
• What’s New In Python 3.4
• What’s New In Python 3.5

Here are some highlights of new capabilities, somewhat subjectively
listed because this writer finds them interesting or important. Lots
of worthwhile features and modules did not make the cut for discus‐
sion in this paper.

Unicode Handling
In Python 3.x, the str type is always Unicode (with efficient encod‐
ing strategies for strings in recent Python 3.x versions, based on the
specific code points occuring within strings). There are far too many
intricacies to the correct handling of all the characters in all the
world (thoughout the history of human language, moreover) within
the same program, with many semantic nuances of directionality,
character composition, the Basic Multilingual Plane versus Supple‐

23

http://bit.ly/wnpy3_0
http://bit.ly/wnpy3_1
http://bit.ly/wnpy3_2
http://bit.ly/wnpy3_3
http://bit.ly/wnpy3_4
http://bit.ly/wnpy3_5


mentary Planes, code surrogates, canonicalization, and on and on,
to discuss in this paper.

Let it suffice for the quick summary to say that recent versions of
Python 3.x versions get all these details correct and make them usa‐
ble. That is not to say that multilingual programming is easy, but
Python 3.x gets closer to making it possible than does Python 2.x—
and in fact does better than essentially any other existing program‐
ming languages (most of which, even when they use “native Uni‐
code” still handle various edge cases in approximate or broken
ways).

The reality is that the world is no longer just the places that use
ASCII for text (nor was it actually ever so), and creating user inter‐
faces and processing data from all the world’s languages is of grow‐
ing importance, and of a significance that will only grow further.
Python 3.x makes the easy things easy and the difficult things possi‐
ble in this domain.

The Greatly Improved Email and Mailbox
Modules
Getting everything in the email and mailbox modules working cor‐
rectly required a lot of concrete work, but also access to the full and
robust handling of Unicode strings. There are too many specific
improvements to document in this paper, but for a far better version
of it, use Python 3.x.

The concurrent.futures Module
The module concurrent abstracts features common to threads, pro‐
cesses, and remote procedure calls. It supports status checks (run‐
ning or done), timeouts, cancellations, adding callbacks, and access
to results or exceptions. For example:

import concurrent.futures, shutil
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as e:
    e.submit(shutil.copy, 'src1.txt', 'dest1.txt')
    e.submit(shutil.copy, 'src2.txt', 'dest2.txt')
    e.submit(shutil.copy, 'src3.txt', 'dest3.txt')
    e.submit(shutil.copy, 'src4.txt', 'dest4.txt')

24 | Advantages of Python 3.x



Coroutine Support and yield from
PEP 380, entitled Syntax for Delegating to a Subgenerator, creates a
syntax enhancement that allows multiple generator functions to be
composed and refactored with the same ease that functions can be
refactored. The regular yield statement is perfectly adequate for
simply looping over values. However, refactoring it is difficult and
less composable when using send() or throw() to direct data or
exceptions to a subgenerator. The yield from construction effec‐
tively treats a subgenerator as if it were part of the parent generator
code.

An effect of this new syntactic mechanism is that it is much easier to
write coroutines (which still need a trampoline mechanism, such as
that in asyncio) or cooperative micro-threads that want to commu‐
nicate data among themselves.

The asyncio Module
Building partially on yield from, asyncio provides infrastructure
for writing single-threaded concurrent code using coroutines, multi‐
plexing I/O access over sockets and other resources, running net‐
work clients and servers, and other related primitives. Quoting fur‐
ther from its official documentation, asyncio provides:

• A pluggable event loop with various system-specific imple‐
mentations;

• Transport and protocol abstractions (similar to those in
Twisted);

• Concrete support for TCP, UDP, SSL, subprocess pipes,
delayed calls, and others (some may be system-dependent);

• A Future class that mimics the one in the concurrent.futures
module, but adapted for use with the event loop;

• Coroutines and tasks based on yield from (PEP 380), to help
write concurrent code in a sequential fashion;

• Cancellation support for Futures and coroutines;

• Synchronization primitives for use between coroutines in a
single thread, mimicking those in the threading module;

Coroutine Support and yield from | 25

http://bit.ly/1wpQv0i
http://bit.ly/1aZTxPn


• An interface for passing work off to a threadpool, for times
when you absolutely, positively have to use a library that
makes blocking I/O calls.

The event loop in asyncio is, at least in spirit, similar to what the
Twisted framework provides, but it provides it with a standardized
API and in the standard library.

Views and Iterators Everywhere
Most everything that returns something sequence-like that can be
an iterable rather than a concrete list has become so in Python 3.x.
This often saves memory and improves performance of programs.
For example:

• dict methods dict.keys(), dict.items(), and dict.values()
return “views” instead of lists.

• map() and filter() return iterators. If you really need a list, a
quick fix is list(map(...)), but a better fix is often to use a list
comprehension [...], or rewriting the code so it doesn’t need a
list at all. Particularly tricky is map() invoked for the side effects
of the function; the correct transformation is to use a regular for
loop.

• range() now behaves like xrange() used to behave, except it
works with values of arbitrary size. The latter no longer exists.

• zip() now returns an iterator.

Function Annotations
Snuck into Python 3.0, in 2006, was new syntax for adding annota‐
tions to function signatures. This allowed users to attach values to
the arguments and return value of function definitions, but pro‐
vided no specific guidance as to what values might be so attached
syntactically. In some cases, these annotations were used for docu‐
mentation, in some cases for typing information, in some cases for
other purposes, but mostly they have just been ignored if not forgot‐
ten.

However, with PEP 484, entitled Type Hints, a canonical use for
function annotations will be blessed. In Python 3.5+, when function

26 | Advantages of Python 3.x

http://bit.ly/1C4u9E7


annotations are used, they will indicate information about the types
of arguments and return values that static type checkers will be able
to validate before programs even run. Moreover, the type system
that is specified is a rich system that allows not just basic types, but
nested and structured typing information similar to that found in
research and pure functional languages. A bare-bones example
could be a function like:

def radius(c: complex) -> float:
    return sqrt(c.real**2 + c.imag**2)

Without explaining the full semantics here, a richer example could
look like the following (based on a custom user class Employee):

from typing import Union, Sequence
from mystuff import Employee
def handle_employees(e: Union[Employee, Sequence[Employee]]) -
> int:
    if isinstance(e, Employee):
        e = [e]
    ...

This capability only exists, at the time of this writing, in the third-
party research project mypy, but including it in standard Python
could substantially enhance the way developers use the language.

Other Things
Several small specific changes to functions and methods improve
usability.

super() with No Arguments
Using super() in class definitions was confusing to get right in
Python 2.x; PEP 3135 - New Super made this much easier:

Replacing the old usage of super, calls to the next class in the MRO
(method resolution order) can be made without explicitly passing
the class object (although doing so will still be supported).

The str.format() Mini-Language
Formatting of strings became more versatile with PEP 3101 —
Advanced String Formatting. Technically this is also backported to
Python 2.7.x, so it is not strictly a Python 3.x feature. The general
idea is that you can use multiple curly-brace expressons inside a
string, and apply the str.format() method to them with values to

Other Things | 27

http://mypy-lang.org/
http://bit.ly/1D0QDWA
http://bit.ly/1KRFX0w
http://bit.ly/1KRFX0w


interpolate. The formatting options are much more diverse and
powerful than string interpolation with %. Here’s a simple example:
"{0!r:20} world!".format("Hello"). The string “Hello” will be
inserted, with quotes, in a field at least 20 characters wide.

The argparse Module
As with many other capabilities, the argparse module has been
backported to Python 2.7.x, so is not technically Python 3.x only at
this point. But it is certainly a nice improvement:

A new module for command-line parsing, argparse, was intro‐
duced to overcome the limitations of optparse which did not pro‐
vide support for positional arguments (not just options), subcom‐
mands, required options, and other common patterns of specifying
and validating options.

The itertools Module Keeps Getting Better
There are many powerful functions in itertools (which existed
already in several Python 2.x minor versions), albeit with a philoso‐
phy of providing a strong, minimal set of functions, and leaving
functions that can be composed of expressions involving several of
these building blocks in reciples (sometimes in the official docu‐
mentation). Some of the capabilities in the module have been back‐
ported to Python 2.7.x, but others remain Python 3.x only.

pip Everywhere
The package management tool pip has been a popular third-party
way of installing additional modules and packages for many Python
versions. With Python 3.4+, it is included in every base Python dis‐
tribution, hence making “more batteries” no more than one com‐
mand away on any installation.

28 | Advantages of Python 3.x



Other Implementations

Several implementations of the Python interpreter exist other than
the CPython implementation written and maintained by the Python
Software Foundation (that is, actually written by volunteer core con‐
tributors, but with the intellectual property maintained by the PSF).
The version of Python you can download directly from the
python.org website—and the version included in most operating
system distributions that have any version—is CPython, so named
because it is written in the C programming language (although a lot
of bootstrapping is done in Python itself, even for CPython).

PyPy
A fascinating, arcane, and remarkable project is PyPy, an implemen‐
tation of the Python interpreter written in … Python. Well, OK,
technically it is written in a constrained subset of Python called RPy‐
thon, but every RPython program is a Python program, in any case.

The PyPy website describes the project this way:
PyPy is a fast, compliant alternative implementation of the Python
language (2.7.8 and 3.2.5). It has several advantages and distinct
features:

• Speed: thanks to its Just-in-Time compiler, Python programs
often run faster on PyPy.

• Memory usage: memory-hungry Python programs (several
hundreds of MBs or more) might end up taking less space
than they do in CPython.

29

http://pypy.org/


• Compatibility: PyPy is highly compatible with existing python
code. It supports cffi and can run popular Python libraries like
twisted and django.

• Sandboxing: PyPy provides the ability to run untrusted code in
a fully secure way.

• Stackless: PyPy comes by default with support for stackless
mode, providing micro-threads for massive concurrency.

PyPy is often vastly faster than CPython, especially in computa‐
tional/numeric code (think 5 to 100 times faster, sometimes rivaling
C or Fortran). It is stable and well researched. Some sticking points
with library support remain, especially support libraries written in
C.

There is active interaction between CPython core developers and
PyPy developers, and often ideas from one source wind up influenc‐
ing or being borrowed by the other. As well, the Python Software
Foundation has, from time to time, funded specific efforts within
PyPy development.

PyPy-STM
It is a quirky bit of the culture of Python to speak of complex pro‐
gramming concepts or libraries as “melting your brain”—and no
project has this said of it quite as often as does PyPy (for people who
try to actually understand the internals; installing and running it is
no harder than any other implementation). That is, nothing prior to
PyPy-STM ever earned this honor.

PyPy-STM is just past experimental, but it promises possibilities of
huge additional speedups over regular PyPy for high concurrency
on multi-core systems. PyPy-STM is a version of PyPy that imple‐
ments Software Transactional Memory (STM). According to Wikipe‐
dia:

[STM is a] concurrency control mechanism analogous to database
transactions for controlling access to shared memory in concurrent
computing. It is an alternative to lock-based synchronization. […]
STM is very optimistic: a thread completes modifications to shared
memory without regard for what other threads might be doing,
recording every read and write that it is performing in a log. […]
the reader, […] after completing an entire transaction, verifies that
other threads have not concurrently made changes to memory that
it accessed in the past.

30 | Other Implementations

http://bit.ly/1F7oBYZ
http://bit.ly/1F7oDA7
http://bit.ly/1F7oDA7


You can think of STM as speculative threading—i.e., perhaps among
multiple cores, avoiding the global interpreter lock (GIL). According
to the PyPy-STM docs:

Threads execute their code speculatively, and at known points (e.g.
between bytecodes) they coordinate with each other to agree on
which order their respective actions should be “committed”, i.e.
become globally visible. Each duration of time between two
commit-points is called a transaction.

The bottom line is that PyPy can be a lot faster than CPython, but
cannot easily gain further from multiple cores on a CPU. After a
roughly constant overhead hit, PyPy-STM concurrent performance
starts to scale roughly linearly with the number of cores in perfor‐
mance:

# of threads PyPy (head) PyPy-STM (2.3r2)

N = 1 real 0.92s real 1.34s

N = 2 real 1.77s real 1.39s

N = 3 real 2.57s real 1.58s

N = 4 real 3.38s real 1.64s

Jython
Jython is an implementation of the Python programming language
that is designed to run on the Java™ platform. It contains a compiler
that transforms Python source code to Java bytecodes, which can
then run on a JVM. It also includes Python standard library mod‐
ules which are used by the compiled Java bytecodes. But of greatest
relevance for users, Jython lets users import and use Java packages
as if they were Python modules.

Jython is highly compatible with CPython when both rely on pure
Python modules or standard library modules. The difference arises
in that Jython can access all of the packages developers have written
in Java or other JVM-compatible languages, whereas CPython can
access C extension modules written for use with CPython.

Although JVMs use just-in-time compilation and other optimiza‐
tion techniques, Jython winds up with similar performance as

Jython | 31

http://bit.ly/1F7oEE3
http://www.jython.org/


CPython overall, so unlike with PyPy there is no performance gain
(nor any loss on average; obviously specific micro-benchmarks will
vary, perhaps widely). Unfortunately, Jython so far only supports the
Python 2.x series.

Here is a quick example of use, taken from the Jython documenta‐
tion:

>>> from java.util import Random
>>> r = Random()
>>> r.nextInt()
501203849

Obviously, Python itself—including Jython—has its own random
module with similar functionality. But the code sample illustrates
the seamless use of Java packages in a simple case.

IronPython
IronPython is a lot like Jython overall, merely substituting the .NET
Framework and the CLR in place of Java packages and JVMs. Like
Jython, IronPython is highly compatible with CPython (assuming
pure Python or standard library modules are used), has similar
overall performance, and is incompatible with C extension modules
written for use with CPython.

IronPython is useful for Python programmers who want to access
the various libraries written for the .NET Framework, whatever the
supported language they were written in. Like Jython, however, it so
far only supports the Python 2.x series.

Here is a similar quick example to the one given for Jython, taken
from the IronPython documentation:

>>> from System.Collections.Generic import List, Dictionary
>>> int_list = List[int]()
>>> str_float_dict = Dictionary[str, float]()

In this case, Python has list and dict, but they are not generics in
that they cannot be typed in manner shown in the example. Third
parties may well have written analogous collections in Python, or as
C extension modules, but they are not part of the standard library of
CPython.

32 | Other Implementations

http://ironpython.net/


Cython
Cython is an enhanced version of Python chiefly used for writing
extension modules. It allows for optional type annotations to make
large speed gains in numeric code (and in some other cases). The
Cython website describes it like so:

Cython is an optimising static compiler for both the Python pro‐
gramming language and the extended Cython programming lan‐
guage. […]
The Cython language is a superset of the Python language that
additionally supports calling C functions and declaring C types on
variables and class attributes. This allows the compiler to generate
very efficient C code from Cython code. The C code is generated
once and then compiles with all major C/C++ compilers in CPy‐
thon 2.6, 2.7 (2.4+ with Cython 0.20.x) as well as 3.2 and all later
versions.

Let us borrow a simple example from the Cython documentation:
Consider the following pure Python code:

def f(x):
 return x**2-x
def integrate_f(a, b, N):
    s = 0
    dx = (b-a)/N
    for i in range(N):
         s += f(a+i*dx)
    return s * dx

Simply compiling this in Cython merely gives a 35% speedup. This
is better than nothing, but adding some static types can make a
much larger difference.
With additional type declarations, this might look like:

def f(double x):
    return x**2-x
def integrate_f(double a, double b, int N):
    cdef int i
    cdef double s, dx
    s = 0
    dx = (b-a)/N
    for i in range(N):
        s += f(a+i*dx)
    return s * dx

Since the iterator variable i is typed with C semantics, the for-loop
will be compiled to pure C code. Typing a, s and dx is important as
they are involved in arithmetic within the for-loop; typing b and N

Cython | 33

http://cython.org
http://bit.ly/cythonize


makes less of a difference, but in this case it is not much extra work
to be consistent and type the entire function.
This results in a 4 times speedup over the pure Python version.

While you could make Cython your general Python interpreter, in
practice it is used as an adjunct to CPython, with particular modules
that are performance criticial being compiled as C extension mod‐
ules. Cython modules use the extension .pyx, but produce an inter‐
mediate .c file that is compiled to an actual .so or .pyd module.
Hence the result genuinely is a C extension module, albeit one
whose code was auto-generated from a Python superset that is likely
to be far more readable than writing in C to start with.

Numba
Numba is not technically a Python implementation, but rather
“merely” a C extension module for CPython. However, what it does
is akin to a mixture of PyPy and Cython. Without any semantic
changes, importing and using the decorators supplied by numba
causes just-in-time compilation and optimization of code on a per-
function basis, substituting a fast machine code path for CPython
interpretation of the decorated function. Like PyPy, this gives you
dynamic compilation, type inference, and just-in-time optimization;
like Cython, you can also annotate types explicitly where they are
known in advance. Moreover, Numba “plays well” with NumPy, so
using both together can produce extremely fast execution.

Quoting from the Numba documentation:
Numba gives you the power to speed up your applications with
high performance functions written directly in Python.
Numba generates optimized machine code from pure Python code
using the LLVM compiler infrastructure. With a few simple annota‐
tions, array-oriented and math-heavy Python code can be just-in-
time optimized to performance similar as C, C++ and Fortran,
without having to switch languages or Python interpreters.
Numba’s main features are:

• on-the-fly code generation (at import time or runtime, at the
user’s preference)

• native code generation for the CPU (default) and GPU hard‐
ware integration with the Python scientific software stack
(thanks to Numpy)

34 | Other Implementations

http://numba.pydata.org/
http://bit.ly/1C21EVY


Here is how a Numba-optimized function, taking a Numpy array as
argument, might look like:

@numba.jit
def sum2d(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

[…] You can also tell Numba the function signature you are expect‐
ing. The function f() would now look like:

from numba import jit, int32
@jit(int32(int32, int32))
def f(x, y):
    # A somewhat trivial example
    return x + y

Numba | 35





Python Distributions

Several companies provide Python distributions with “even more
batteries included.”

Continuum Analytics’ Anaconda
Continuum Analytics produces a Python distribution (for Python
2.7 and Python 3.4 currently) called Anaconda that comes bundled
with “195+ of the most popular Python packages for science, math,
engineering, and data analysis.” It also uses its own package manager
called conda that has some advantages over pip and the PyPI ecosys‐
tem. In particular, this distribution comes bundled with NumPy,
SciPy, Pandas, IPython, Matplotlib, Numba, Blaze, and Bokeh.

While the basic distribution is free to download, and free even to
redistribute, Continuum Analytics offers several different enhanced
versions of the distribution for a cost. One of the most interesting of
these commercial enhancements is well integrated with CUDA,
allowing extremely fast operations on numeric arrays by utilizing
GPUs. For an announcement about this technology, bringing
Python even further into the world of high-performance scientific
computing, see “NVIDIA and Continuum Analytics Announce
NumbaPro, A Python CUDA Compiler”.

Enthought’s Canopy
Enthought produces a Python distribution with similar goals to
those of Continuum Analytics—indeed, the latter company is largely
an offshoot of Enthought, and both share a goal of making Python

37

http://continuum.io/
http://bit.ly/1GBLdT5
http://bit.ly/1GBLdT5
https://www.enthought.com/


the default language for scientific computing. Enthought describes
their distribution as:

Enthought Canopy is a comprehensive Python analysis environ‐
ment that provides easy installation of the core scientific analytic
and scientific Python packages, creating a robust platform you can
explore, develop, and visualize on. In addition to its pre-built, tes‐
ted Python distribution, Enthought Canopy has valuable tools for
iterative data analysis, visualization and application development.

As with Anaconda, Canopy has a basic free version and several
enhanced versions for additional cost. Enthought’s focus in its
enhanced distributions is more on integration with Python training
than with performance enhancements per se.

ActiveState’s ActivePython
ActiveState produces a Python distribution that bundles a wide
range of Python versions and a good collection of external libraries
—more business-oriented than scientific in contrast to the other dis‐
tributions mentioned—and that also comes with its own enhanced
package manager.

As with other companies producing distributions, ActiveState has
several options for enhanced distributions that are available at addi‐
tional cost. In the case of ActivePython, the extra cost pays for sup‐
port guarantees (email, phone, etc.).

38 | Python Distributions

http://www.activestate.com/


About the Author
David Mertz is a director of the PSF, and chair of its Trademarks
Committee and Outreach & Education Committee. He wrote the
columns Charming Python and XML Matters for IBM developer‐
Works and the Addison-Wesley book Text Processing in Python, has
spoken at multiple OSCONs and PyCons, and was invited to be a
keynote speaker at PyCon India, PyCon UK, PyCon ZA, and PyCon
Belarus.

In the distant past, David spent some time as a university professor,
teaching in areas far removed from computer programming, but
gained some familiarity with the vicissitudes of pedagogy.

Since 2008, David has worked with folks who have built the world’s
fastest supercomputer for performing molecular dynamics. He is
pleased to find Python becoming the default high-level language for
most scientific computing projects.


	Table of Contents
	Chapter 1. Python Versions
	The (Small) Break
	Moving Forward
	Unix-Like Systems
	Python 3 on Fedora and Red Hat
	Python 3 on Ubuntu

	Python 3 Uptake
	Downloads from python.org
	Downloads from the Python Package Index
	A 2013/2014 Survey

	Is It Enough?
	Python 3.5 Release Schedule


	Chapter 2. Porting
	2to3
	six.py
	Python-Future
	Library Support

	Chapter 3. Advantages of Python 3.x
	Unicode Handling
	The Greatly Improved Email and Mailbox Modules
	The concurrent.futures Module
	Coroutine Support and yield from
	The asyncio Module
	Views and Iterators Everywhere
	Function Annotations
	Other Things
	super() with No Arguments
	The str.format() Mini-Language
	The argparse Module
	The itertools Module Keeps Getting Better
	pip Everywhere


	Chapter 4. Other Implementations
	PyPy
	PyPy-STM
	Jython
	IronPython
	Cython
	Numba

	Chapter 5. Python Distributions
	Continuum Analytics’ Anaconda
	Enthought’s Canopy
	ActiveState’s ActivePython




