
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134173276
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134173276
https://plusone.google.com/share?url=http://www.informit.com/title/9780134173276
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134173276
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134173276/Free-Sample-Chapter

Python Distilled

This page intentionally left blank

Python Distilled

David M. Beazley

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021943288

Copyright © 2022 Pearson Education, Inc.

Cover illustration by EHStockphoto/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-417327-6
ISBN-10: 0-13-417327-9

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface xiii

1 Python Basics 1
1.1 Running Python 1

1.2 Python Programs 2

1.3 Primitives, Variables, and

Expressions 3

1.4 Arithmetic Operators 5

1.5 Conditionals and Control Flow 7

1.6 Text Strings 9

1.7 File Input and Output 12

1.8 Lists 13

1.9 Tuples 15

1.10 Sets 17

1.11 Dictionaries 18

1.12 Iteration and Looping 21

1.13 Functions 22

1.14 Exceptions 24

1.15 Program Termination 26

1.16 Objects and Classes 26

1.17 Modules 30

1.18 Script Writing 32

1.19 Packages 33

1.20 Structuring an Application 34

1.21 Managing Third-Party Packages 35

1.22 Python: It Fits Your Brain 36

2 Operators, Expressions, and Data
Manipulation 37
2.1 Literals 37

2.2 Expressions and Locations 38

2.3 Standard Operators 39

2.4 In-Place Assignment 41

2.5 Object Comparison 42

2.6 Ordered Comparison Operators 42

vi Contents

2.7 Boolean Expressions and Truth

Values 43

2.8 Conditional Expressions 44

2.9 Operations Involving Iterables 45

2.10 Operations on Sequences 47

2.11 Operations on Mutable

Sequences 49

2.12 Operations on Sets 50

2.13 Operations on Mappings 51

2.14 List, Set, and Dictionary

Comprehensions 52

2.15 Generator Expressions 54

2.16 The Attribute (.) Operator 56

2.17 The Function Call () Operator 56

2.18 Order of Evaluation 56

2.19 Final Words: The Secret Life of

Data 58

3 Program Structure and Control
Flow 59
3.1 Program Structure and

Execution 59

3.2 Conditional Execution 59

3.3 Loops and Iteration 60

3.4 Exceptions 64

3.4.1 The Exception

Hierarchy 67

3.4.2 Exceptions and Control

Flow 68

3.4.3 Defining New

Exceptions 69

3.4.4 Chained Exceptions 70

3.4.5 Exception

Tracebacks 73

3.4.6 Exception Handling

Advice 73

3.5 Context Managers and the with
Statement 75

3.6 Assertions and __debug__ 77

3.7 Final Words 78

Contents vii

4 Objects, Types, and Protocols 79
4.1 Essential Concepts 79

4.2 Object Identity and Type 80

4.3 Reference Counting and Garbage

Collection 81

4.4 References and Copies 83

4.5 Object Representation and Printing 84

4.6 First-Class Objects 85

4.7 Using None for Optional or Missing

Data 87

4.8 Object Protocols and Data

Abstraction 87

4.9 Object Protocol 89

4.10 Number Protocol 90

4.11 Comparison Protocol 92

4.12 Conversion Protocols 94

4.13 Container Protocol 95

4.14 Iteration Protocol 97

4.15 Attribute Protocol 98

4.16 Function Protocol 98

4.17 Context Manager Protocol 99

4.18 Final Words: On Being Pythonic 99

5 Functions 101
5.1 Function Definitions 101

5.2 Default Arguments 101

5.3 Variadic Arguments 102

5.4 Keyword Arguments 103

5.5 Variadic Keyword Arguments 104

5.6 Functions Accepting All Inputs 104

5.7 Positional-Only Arguments 105

5.8 Names, Documentation Strings, and Type

Hints 106

5.9 Function Application and Parameter

Passing 107

5.10 Return Values 109

5.11 Error Handling 110

5.12 Scoping Rules 111

5.13 Recursion 114

viii Contents

5.14 The lambda Expression 114

5.15 Higher-Order Functions 115

5.16 Argument Passing in Callback

Functions 118

5.17 Returning Results from

Callbacks 121

5.18 Decorators 124

5.19 Map, Filter, and Reduce 127

5.20 Function Introspection, Attributes,

and Signatures 129

5.21 Environment Inspection 131

5.22 Dynamic Code Execution and

Creation 133

5.23 Asynchronous Functions and

await 135

5.24 Final Words: Thoughts on Functions

and Composition 137

6 Generators 139
6.1 Generators and yield 139

6.2 Restartable Generators 142

6.3 Generator Delegation 142

6.4 Using Generators in Practice 144

6.5 Enhanced Generators and yield
Expressions 146

6.6 Applications of Enhanced

Generators 148

6.7 Generators and the Bridge to

Awaiting 151

6.8 Final Words: A Brief History of

Generators and Looking

Forward 152

7 Classes and Object-Oriented
Programming 153
7.1 Objects 153

7.2 The class Statement 154

7.3 Instances 155

7.4 Attribute Access 156

7.5 Scoping Rules 158

Contents ix

7.6 Operator Overloading and Protocols 159

7.7 Inheritance 160

7.8 Avoiding Inheritance via Composition 163

7.9 Avoiding Inheritance via Functions 166

7.10 Dynamic Binding and Duck Typing 167

7.11 The Danger of Inheriting from Built-in

Types 167

7.12 Class Variables and Methods 169

7.13 Static Methods 173

7.14 A Word about Design Patterns 176

7.15 Data Encapsulation and Private

Attributes 176

7.16 Type Hinting 179

7.17 Properties 180

7.18 Types, Interfaces, and Abstract Base

Classes 183

7.19 Multiple Inheritance, Interfaces, and

Mixins 187

7.20 Type-Based Dispatch 193

7.21 Class Decorators 194

7.22 Supervised Inheritance 197

7.23 The Object Life Cycle and Memory

Management 199

7.24 Weak References 204

7.25 Internal Object Representation and

Attribute Binding 206

7.26 Proxies, Wrappers, and Delegation 208

7.27 Reducing Memory Use with

__slots__ 210

7.28 Descriptors 211

7.29 Class Definition Process 215

7.30 Dynamic Class Creation 216

7.31 Metaclasses 217

7.32 Built-in Objects for Instances and

Classes 222

7.33 Final Words: Keep It Simple 223

8 Modules and Packages 225
8.1 Modules and the import Statement 225

x Contents

8.2 Module Caching 227

8.3 Importing Selected Names from a

Module 228

8.4 Circular Imports 230

8.5 Module Reloading and

Unloading 232

8.6 Module Compilation 233

8.7 The Module Search Path 234

8.8 Execution as the Main Program 234

8.9 Packages 235

8.10 Imports Within a Package 237

8.11 Running a Package Submodule as a

Script 238

8.12 Controlling the Package

Namespace 239

8.13 Controlling Package Exports 240

8.14 Package Data 241

8.15 Module Objects 242

8.16 Deploying Python Packages 243

8.17 The Penultimate Word: Start with a

Package 244

8.18 The Final Word: Keep It Simple 245

9 Input and Output 247
9.1 Data Representation 247

9.2 Text Encoding and Decoding 248

9.3 Text and Byte Formatting 250

9.4 Reading Command-Line

Options 254

9.5 Environment Variables 256

9.6 Files and File Objects 256

9.6.1 Filenames 257

9.6.2 File Modes 258

9.6.3 I/O Buffering 258

9.6.4 Text Mode Encoding 259

9.6.5 Text-Mode Line

Handling 260

9.7 I/O Abstraction Layers 260

9.7.1 File Methods 261

Contents xi

9.8 Standard Input, Output, and Error 263

9.9 Directories 264

9.10 The print() function 265

9.11 Generating Output 265

9.12 Consuming Input 266

9.13 Object Serialization 268

9.14 Blocking Operations and

Concurrency 269

9.14.1 Nonblocking I/O 270

9.14.2 I/O Polling 271

9.14.3 Threads 271

9.14.4 Concurrent Execution with

asyncio 272

9.15 Standard Library Modules 273

9.15.1 asyncio Module 273

9.15.2 binascii Module 274

9.15.3 cgi Module 275

9.15.4 configparser Module 276

9.15.5 csv Module 276

9.15.6 errno Module 277

9.15.7 fcntl Module 278

9.15.8 hashlib Module 278

9.15.9 http Package 279

9.15.10 io Module 279

9.15.11 json Module 280

9.15.12 logging Module 280

9.15.13 os Module 281

9.15.14 os.path Module 281

9.15.15 pathlib Module 282

9.15.16 re Module 283

9.15.17 shutil Module 284

9.15.18 select Module 284

9.15.19 smtplib Module 285

9.15.20 socket Module 286

9.15.21 struct Module 288

9.15.22 subprocess Module 288

9.15.23 tempfile Module 289

9.15.24 textwrap Module 290

xii Contents

9.15.25 threading Module 291

9.15.26 time Module 293

9.15.27 urllib Package 293

9.15.28 unicodedata
Module 294

9.15.29 xml Package 295

9.16 Final Words 296

10 Built-in Functions and Standard
Library 297
10.1 Built-in Functions 297

10.2 Built-in Exceptions 314

10.2.1 Exception Base

Classes 314

10.2.2 Exception Attributes 314

10.2.3 Predefined Exception

Classes 315

10.3 Standard Library 318

10.3.1 collections
Module 318

10.3.2 datetime Module 318

10.3.3 itertools Module 318

10.3.4 inspect Module 318

10.3.5 math Module 318

10.3.6 os Module 319

10.3.7 random Module 319

10.3.8 re Module 319

10.3.9 shutil Module 319

10.3.10 statistics
Module 319

10.3.11 sys Module 319

10.3.12 time Module 319

10.3.13 turtle Module 319

10.3.14 unittest Module 319

10.4 Final Words: Use the Built-Ins 320

Index 321

Preface

More than 20 years have passed since I authored the Python Essential Reference. At that time,
Python was a much smaller language and it came with a useful set of batteries in its
standard library. It was something that could mostly fit in your brain. The Essential Reference
reflected that era. It was a small book that you could take with you to write some Python
code on a desert island or inside a secret vault. Over the three subsequent revisions, the
Essential Reference stuck with this vision of being a compact but complete language
reference—because if you’re going to code in Python on vacation, why not use all of it?

Today, more than a decade since the publication of the last edition, the Python world is
much different. No longer a niche language, Python has become one of the most popular
programming languages in the world. Python programmers also have a wealth of
information at their fingertips in the form of advanced editors, IDEs, notebooks, web
pages, and more. In fact, there’s probably little need to consult a reference book when
almost any reference material you might want can be conjured to appear before your eyes
with the touch of a few keys.

If anything, the ease of information retrieval and the scale of the Python universe
presents a different kind of challenge. If you’re just starting to learn or need to solve a new
problem, it can be overwhelming to know where to begin. It can also be difficult to
separate the features of various tools from the core language itself. These kinds of problems
are the rationale for this book.
Python Distilled is a book about programming in Python. It’s not trying to document

everything that’s possible or has been done in Python. Its focus is on presenting a modern
yet curated (or distilled) core of the language. It has been informed by my years of teaching
Python to scientists, engineers, and software professionals. However, it’s also a product of
writing software libraries, pushing the edges of what makes Python tick, and finding out
what’s most useful.

For the most part, the book focuses on Python programming itself. This includes
abstraction techniques, program structure, data, functions, objects, modules, and so
forth—topics that will well serve programmers working on Python projects of any size.
Pure reference material that can be easily obtained via an IDE (such as lists of functions,
names of commands, arguments, etc.) is generally omitted. I’ve also made a conscious
choice to not describe the fast-changing world of Python tooling—editors, IDEs,
deployment, and related matters.

Perhaps controversially, I don’t generally focus on language features related to large-scale
software project management. Python is sometimes used for big and serious things—
comprised of millions upon millions of lines of code. Such applications require specialized
tooling, design, and features. They also involve committees, and meetings, and decisions
to be made about very important matters. All this is too much for this small book. But

xiv Preface

perhaps the honest answer is that I don’t use Python to write such applications—and
neither should you. At least not as a hobby.

In writing a book, there is always a cut-off for the ever-evolving language features. This
book was written during the era of Python 3.9. As such, it does not include some of the
major additions planned for later releases—for example, structural pattern matching.
That’s a topic for a different time and place.

Last, but not least, I think it’s important that programming remains fun. I hope that my
book will not only help you become a productive Python programmer but also capture
some of the magic that has inspired people to use Python for exploring the stars, flying
helicopters on Mars, and spraying squirrels with a water cannon in the backyard.

Acknowledgments
I’d like to thank the technical reviewers, Shawn Brown, Sophie Tabac, and Pete Fein, for
their helpful comments. I’d also like to thank my long-time editor Debra Williams Cauley
for her work on this and past projects. The many students who have taken my classes have
had a major if indirect impact on the topics covered in this book. Last, but not least, I’d
like to thank Paula, Thomas, and Lewis for their support and love.

About the Author
David Beazley is the author of the Python Essential Reference, Fourth Edition
(Addison-Wesley, 2010) and Python Cookbook, Third Edition (O’Reilly, 2013). He
currently teaches advanced computer science courses through his company Dabeaz LLC
(www.dabeaz.com). He’s been using, writing, speaking, and teaching about Python
since 1996.

http://www.dabeaz.com

5

Functions

Functions are a fundamental building block of most Python programs. This chapter
describes function definitions, function application, scoping rules, closures, decorators,
and other functional programming features. Particular attention is given to different
programming idioms, evaluation models, and patterns associated with functions.

5.1 Function Definitions
Functions are defined with the def statement:

def add(x, y):

return x + y

The first part of a function definition specifies the function name and parameter names
that represent input values. The body of a function is a sequence of statements that execute
when the function is called or applied. You apply a function to arguments by writing
the function name followed by the arguments enclosed in parentheses: a = add(3, 4).
Arguments are fully evaluated left-to-right before executing the function body. For
example, add(1+1, 2+2) is first reduced to add(2, 4) before calling the function. This is
known as applicative evaluation order. The order and number of arguments must match the
parameters given in the function definition. If a mismatch exists, a TypeError exception
is raised. The structure of calling a function (such as the number of required arguments) is
known as the function’s call signature.

5.2 Default Arguments
You can attach default values to function parameters by assigning values in the function
definition. For example:

def split(line, delimiter=','):

statements

102 Chapter 5 Functions

When a function defines a parameter with a default value, that parameter and all the
parameters that follow it are optional. It is not possible to specify a parameter with no
default value after any parameter with a default value.

Default parameter values are evaluated once when the function is first defined, not each
time the function is called. This often leads to surprising behavior if mutable objects are
used as a default:

def func(x, items=[]):

items.append(x)

return items

func(1) # returns [1]

func(2) # returns [1, 2]

func(3) # returns [1, 2, 3]

Notice how the default argument retains the modifications made from previous
invocations. To prevent this, it is better to use None and add a check as follows:

def func(x, items=None):

if items is None:

items = []

items.append(x)

return items

As a general practice, to avoid such surprises, only use immutable objects for default
argument values—numbers, strings, Booleans, None, and so on.

5.3 Variadic Arguments
A function can accept a variable number of arguments if an asterisk (*) is used as a prefix
on the last parameter name. For example:

def product(first, *args):

result = first

for x in args:

result = result * x

return result

product(10, 20) # -> 200

product(2, 3, 4, 5) # -> 120

In this case, all of the extra arguments are placed into the args variable as a tuple. You
can then work with the arguments using the standard sequence operations—iteration,
slicing, unpacking, and so on.

5.4 Keyword Arguments 103

5.4 Keyword Arguments
Function arguments can be supplied by explicitly naming each parameter and specifying a
value. These are known as keyword arguments. Here is an example:

def func(w, x, y, z):

statements

Keyword argument invocation

func(x=3, y=22, w='hello', z=[1, 2])

With keyword arguments, the order of the arguments doesn’t matter as long as each
required parameter gets a single value. If you omit any of the required arguments or if the
name of a keyword doesn’t match any of the parameter names in the function definition, a
TypeError exception is raised. Keyword arguments are evaluated in the same order as they
are specified in the function call.

Positional arguments and keyword arguments can appear in the same function call,
provided that all the positional arguments appear first, values are provided for all
nonoptional arguments, and no argument receives more than one value. Here’s an example:

func('hello', 3, z=[1, 2], y=22)

func(3, 22, w='hello', z=[1, 2]) # TypeError. Multiple values for w

If desired, it is possible to force the use of keyword arguments. This is done by listing
parameters after a * argument or just by including a single * in the definition. For example:

def read_data(filename, *, debug=False):

...

def product(first, *values, scale=1):

result = first * scale

for val in values:

result = result * val

return result

In this example, the debug argument to read_data() can only be specified by keyword.
This restriction often improves code readability:

data = read_data('Data.csv', True) # NO. TypeError

data = read_data('Data.csv', debug=True) # Yes.

The product() function takes any number of positional arguments and an optional
keyword-only argument. For example:

result = product(2,3,4) # Result = 24

result = product(2,3,4, scale=10) # Result = 240

104 Chapter 5 Functions

5.5 Variadic Keyword Arguments
If the last argument of a function definition is prefixed with **, all the additional keyword
arguments (those that don’t match any of the other parameter names) are placed in a
dictionary and passed to the function. The order of items in this dictionary is guaranteed
to match the order in which keyword arguments were provided.

Arbitrary keyword arguments might be useful for defining functions that accept a large
number of potentially open-ended configuration options that would be too unwieldy to
list as parameters. Here’s an example:

def make_table(data, **parms):

Get configuration parameters from parms (a dict)

fgcolor = parms.pop('fgcolor', 'black')

bgcolor = parms.pop('bgcolor', 'white')

width = parms.pop('width', None)

...

No more options

if parms:

raise TypeError(f'Unsupported configuration options {list(parms)}')

make_table(items, fgcolor='black', bgcolor='white', border=1,

borderstyle='grooved', cellpadding=10,

width=400)

The pop() method of a dictionary removes an item from a dictionary, returning a
possible default value if it’s not defined. The parms.pop('fgcolor', 'black') expression
used in this code mimics the behavior of a keyword argument specified with a default
value.

5.6 Functions Accepting All Inputs
By using both * and **, you can write a function that accepts any combination of
arguments. The positional arguments are passed as a tuple and the keyword arguments are
passed as a dictionary. For example:

Accept variable number of positional or keyword arguments

def func(*args, **kwargs):

args is a tuple of positional args

kwargs is dictionary of keyword args

...

This combined use of *args and **kwargs is commonly used to write wrappers,
decorators, proxies, and similar functions. For example, suppose you have a function to
parse lines of text taken from an iterable:

5.7 Positional-Only Arguments 105

def parse_lines(lines, separator=',', types=(), debug=False):

for line in lines:

...

statements

...

Now, suppose you want to make a special-case function that parses data from a file
specified by filename instead. To do that, you could write:

def parse_file(filename, *args, **kwargs):

with open(filename, 'rt') as file:

return parse_lines(file, *args, **kwargs)

The benefit of this approach is that the parse_file() function doesn’t need to know
anything about the arguments of parse_lines(). It accepts any extra arguments the caller
provides and passes them along. This also simplifies the maintenance of the parse_file()

function. For example, if new arguments are added to parse_lines(), those arguments
will magically work with the parse_file() function too.

5.7 Positional-Only Arguments
Many of Python’s built-in functions only accept arguments by position. You’ll see this
indicated by the presence of a slash (/) in the calling signature of a function shown by
various help utilities and IDEs. For example, you might see something like func(x,y,/).
This means that all arguments appearing before the slash can only be specified by position.
Thus, you could call the function as func(2, 3) but not as func(x=2, y=3). For
completeness, this syntax may also be used when defining functions. For example, you can
write the following:

def func(x, y, /):

pass

func(1, 2) # Ok

func(1, y=2) # Error

This definition form is rarely found in code since it was first supported only in
Python 3.8. However, it can be a useful way to avoid potential name clashes between
argument names. For example, consider the following code:

import time

def after(seconds, func, /, *args, **kwargs):

time.sleep(seconds)

return func(*args, **kwargs)

106 Chapter 5 Functions

def duration(*, seconds, minutes, hours):

return seconds + 60 * minutes + 3600 * hours

after(5, duration, seconds=20, minutes=3, hours=2)

In this code, seconds is being passed as a keyword argument, but it’s intended to be
used with the duration function that’s passed to after(). The use of positional-only
arguments in after() prevents a name clash with the seconds argument that appears first.

5.8 Names, Documentation Strings, and
Type Hints

The standard naming convention for functions is to use lowercase letters with an
underscore (_) used as a word separator—for example, read_data() and not readData().
If a function is not meant to be used directly because it’s a helper or some kind of internal
implementation detail, its name usually has a single underscore prepended to it—for
example, _helper(). These are only conventions, however. You are free to name a
function whatever you want as long as the name is a valid identifier.

The name of a function can be obtained via the __name__ attribute. This is sometimes
useful for debugging.

>>> def square(x):

... return x * x

...

>>> square.__name__

'square'

>>>

It is common for the first statement of a function to be a documentation string
describing its usage. For example:

def factorial(n):

'''

Computes n factorial. For example:

>>> factorial(6)

120

>>>

'''

if n <= 1:

return 1

else:

return n*factorial(n-1)

5.9 Function Application and Parameter Passing 107

The documentation string is stored in the __doc__ attribute of the function. It’s often
accessed by IDEs to provide interactive help.

Functions can also be annotated with type hints. For example:

def factorial(n: int) -> int:

if n <= 1:

return 1

else:

return n * factorial(n - 1)

The type hints don’t change anything about how the function evaluates. That is, the
presence of hints provides no performance benefits or extra runtime error checking. The
hints are merely stored in the __annotations__ attribute of the function which is a
dictionary mapping argument names to the supplied hints. Third-party tools such as IDEs
and code checkers might use the hints for various purposes.

Sometimes you will see type hints attached to local variables within a function. For
example:

def factorial(n:int) -> int:

result: int = 1 # Type-hinted local variable

while n > 1:

result *= n

n -= 1

return result

Such hints are completely ignored by the interpreter. They’re not checked, stored, or
even evaluated. Again, the purpose of the hints is to help third-party code-checking tools.
Adding type hints to functions is not advised unless you are actively using code-checking
tools that make use of them. It is easy to specify type hints incorrectly—and, unless you’re
using a tool that checks them, errors will go undiscovered until someone else decides to
run a type-checking tool on your code.

5.9 Function Application and Parameter
Passing

When a function is called, the function parameters are local names that get bound to the
passed input objects. Python passes the supplied objects to the function “as is” without any
extra copying. Care is required if mutable objects, such as lists or dictionaries, are passed. If
changes are made, those changes are reflected in the original object. Here’s an example:

def square(items):

for i, x in enumerate(items):

items[i] = x * x # Modify items in-place

108 Chapter 5 Functions

a = [1, 2, 3, 4, 5]

square(a) # Changes a to [1, 4, 9, 16, 25]

Functions that mutate their input values, or change the state of other parts of the
program behind the scenes, are said to have “side effects.” As a general rule, side effects are
best avoided. They can become a source of subtle programming errors as programs grow in
size and complexity—it may not be obvious from reading a function call if a function has
side effects or not. Such functions also interact poorly with programs involving threads and
concurrency since side effects typically need to be protected by locks.

It’s important to make a distinction between modifying an object and reassigning a
variable name. Consider this function:

def sum_squares(items):

items = [x*x for x in items] # Reassign "items" name

return sum(items)

a = [1, 2, 3, 4, 5]

result = sum_squares(a)

print(a) # [1, 2, 3, 4, 5] (Unchanged)

In this example, it appears as if the sum_squares() function might be overwriting
the passed items variable. Yes, the local items label is reassigned to a new value. But the
original input value (a) is not changed by that operation. Instead, the local variable
name items is bound to a completely different object—the result of the internal list
comprehension. There is a difference between assigning a variable name and modifying an
object. When you assign a value to a name, you’re not overwriting the object that was
already there—you’re just reassigning the name to a different object.

Stylistically, it is common for functions with side effects to return None as a result. As an
example, consider the sort() method of a list:

>>> items = [10, 3, 2, 9, 5]

>>> items.sort() # Observe: no return value

>>> items

[2, 3, 5, 9, 10]

>>>

The sort() method performs an in-place sort of list items. It returns no result. The
lack of a result is a strong indicator of a side effect—in this case, the elements of the list got
rearranged.

Sometimes you already have data in a sequence or a mapping that you’d like to pass to a
function. To do this, you can use * and ** in function invocations. For example:

def func(x, y, z):

...

s = (1, 2, 3)

5.10 Return Values 109

Pass a sequence as arguments

result = func(*s)

Pass a mapping as keyword arguments

d = { 'x':1, 'y':2, 'z':3 }

result = func(**d)

You may be taking data from multiple sources or even supplying some of the arguments
explicitly, and it will all work as long as the function gets all of its required arguments,
there is no duplication, and everything in its calling signature aligns properly. You can even
use * and ** more than once in the same function call. If you’re missing an argument or
specify duplicate values for an argument, you’ll get an error. Python will never let you call
a function with arguments that don’t satisfy its signature.

5.10 Return Values
The return statement returns a value from a function. If no value is specified or you omit
the return statement, None is returned. To return multiple values, place them in a tuple:

def parse_value(text):

'''

Split text of the form name=val into (name, val)

'''

parts = text.split('=', 1)

return (parts[0].strip(), parts[1].strip())

Values returned in a tuple can be unpacked to individual variables:

name, value = parse_value('url=http://www.python.org')

Sometimes named tuples are used as an alternative:

from typing import NamedTuple

class ParseResult(NamedTuple):

name: str

value: str

def parse_value(text):

'''

Split text of the form name=val into (name, val)

'''

parts = text.split('=', 1)

return ParseResult(parts[0].strip(), parts[1].strip())

110 Chapter 5 Functions

A named tuple works the same way as a normal tuple (you can perform all the same
operations and unpacking), but you can also reference the returned values using named
attributes:

r = parse_value('url=http://www.python.org')

print(r.name, r.value)

5.11 Error Handling
One problem with the parse_value() function in the previous section is error handling.
What course of action should be taken if the input text is malformed and no correct result
can be returned?

One approach is to treat the result as optional—that is, the function either works by
returning an answer or returns None which is commonly used to indicate a missing value.
For example, the function could be modified like this:

def parse_value(text):

parts = text.split('=', 1)

if len(parts) == 2:

return ParseResult(parts[0].strip(), parts[1].strip())

else:

return None

With this design, the burden of checking for the optional result is placed on the caller:

result = parse_value(text)

if result:

name, value = result

Or, in Python 3.8+, more compactly as follows:

if result := parse_value(text):

name, value = result

Instead of returning None, you could treat malformed text as an error by raising an
exception. For example:

def parse_value(text):

parts = text.split('=', 1)

if len(parts) == 2:

return ParseResult(parts[0].strip(), parts[1].strip())

else:

raise ValueError('Bad value')

In this case, the caller is given the option of handling bad values with try-except. For
example:

5.12 Scoping Rules 111

try:

name, value = parse_value(text)

...

except ValueError:

...

The choice of whether or not to use an exception is not always clear-cut. As a general
rule, exceptions are the more common way to handle an abnormal result. However,
exceptions are also expensive if they frequently occur. If you’re writing code where
performance matters, returning None, False, -1, or some other special value to indicate
failure might be better.

5.12 Scoping Rules
Each time a function executes, a local namespace is created. This namespace is an
environment that contains the names and values of the function parameters as well as all
variables that are assigned inside the function body. The binding of names is known in
advance when a function is defined and all names assigned within the function body are
bound to the local environment. All other names that are used but not assigned in the
function body (the free variables) are dynamically found in the global namespace which is
always the enclosing module where a function was defined.

There are two types of name-related errors that can occur during function execution.
Looking up an undefined name of a free variable in the global environment results in a
NameError exception. Looking up a local variable that hasn’t been assigned a value yet
results in an UnboundLocalError exception. This latter error is often a result of control
flow bugs. For example:

def func(x):

if x > 0:

y = 42

return x + y # y not assigned if conditional is false

func(10) # Returns 52

func(-10) # UnboundLocalError: y referenced before assignment

UnboundLocalError is also sometimes caused by a careless use of in-place assignment
operators. A statement such as n += 1 is handled as n = n + 1. If used before n is assigned
an initial value, it will fail.

def func():

n += 1 # Error: UnboundLocalError

It’s important to emphasize that variable names never change their scope—they are
either global variables or local variables, and this is determined at function definition time.
Here is an example that illustrates this:

112 Chapter 5 Functions

x = 42

def func():

print(x) # Fails. UnboundLocalError

x = 13

func()

In this example, it might look as though the print() function would output the value
of the global variable x. However, the assignment of x that appears later marks x as a local
variable. The error is a result of accessing a local variable that hasn’t yet been assigned a
value.

If you remove the print() function, you get code that looks like it might be
reassigning the value of a global variable. For example, consider this:

x = 42

def func():

x = 13

func()

x is still 42

When this code executes, x retains its value of 42, despite the appearance that it might
be modifying the global variable x from inside the function func. When variables are
assigned inside a function, they’re always bound as local variables; as a result, the variable
x in the function body refers to an entirely new object containing the value 13, not the
outer variable. To alter this behavior, use the global statement. global declares names as
belonging to the global namespace, and it’s necessary when a global variable needs to be
modified. Here’s an example:

x = 42

y = 37

def func():

global x # 'x' is in global namespace

x = 13

y = 0

func()

x is now 13. y is still 37.

It should be noted that use of the global statement is usually considered poor Python
style. If you’re writing code where a function needs to mutate state behind the scenes,
consider using a class definition and modify state by mutating an instance or class variable
instead. For example:

class Config:

x = 42

def func():

Config.x = 13

5.12 Scoping Rules 113

Python allows nested function definitions. Here’s an example:

def countdown(start):

n = start

def display(): # Nested function definition

print('T-minus', n)

while n > 0:

display()

n -= 1

Variables in nested functions are bound using lexical scoping. That is, names are
resolved first in the local scope and then in successive enclosing scopes from the innermost
scope to the outermost scope. Again, this is not a dynamic process—the binding of names
is determined once at function definition time based on syntax. As with global variables,
inner functions can’t reassign the value of a local variable defined in an outer function. For
example, this code does not work:

def countdown(start):

n = start

def display():

print('T-minus', n)

def decrement():

n -= 1 # Fails: UnboundLocalError

while n > 0:

display()

decrement()

To fix this, you can declare n as nonlocal like this:

def countdown(start):

n = start

def display():

print('T-minus', n)

def decrement():

nonlocal n

n -= 1 # Modifies the outer n

while n > 0:

display()

decrement()

nonlocal cannot be used to refer to a global variable—it must reference a local variable
in an outer scope. Thus, if a function is assigning to a global, you should still use the
global declaration as previously described.

Use of nested functions and nonlocal declarations is not a common programming style.
For example, inner functions have no outside visibility, which can complicate testing and
debugging. Nevertheless, nested functions are sometimes useful for breaking complex
calculations into smaller parts and hiding internal implementation details.

114 Chapter 5 Functions

5.13 Recursion
Python supports recursive functions. For example:

def sumn(n):

if n == 0:

return 0

else:

return n + sumn(n-1)

However, there is a limit on the depth of recursive function calls. The function
sys.getrecursionlimit() returns the current maximum recursion depth, and the
function sys.setrecursionlimit() can be used to change the value. The default value is
1000. Although it is possible to increase the value, programs are still limited by the stack
size enforced by the host operating system. When the recursion depth limit is exceeded, a
RuntimeError exception is raised. If the limit is increased too much, Python might crash
with a segmentation fault or another operating system error.

In practice, issues with the recursion limit only arise when you work with deeply
nested recursive data structures such as trees and graphs. Many algorithms involving trees
naturally lend themselves to recursive solutions—and, if your data structure is too large,
you might blow the stack limit. However, there are some clever workarounds; see
Chapter 6 on generators for an example.

5.14 The lambda Expression
An anonymous—unnamed—function can be defined with a lambda expression:

lambda args: expression

args is a comma-separated list of arguments, and expression is an expression involving
those arguments. Here’s an example:

a = lambda x, y: x + y

r = a(2, 3) # r gets 5

The code defined with lambda must be a valid expression. Multiple statements, or
nonexpression statements such as try and while, cannot appear in a lambda expression.
lambda expressions follow the same scoping rules as functions.

One of the main uses of lambda is to define small callback functions. For example, you
may see it used with built-in operations such as sorted(). For example:

Sort a list of words by the number of unique letters

result = sorted(words, key=lambda word: len(set(word)))

Caution is required when a lambda expression contains free variables (not specified as
parameters). Consider this example:

5.15 Higher-Order Functions 115

x = 2

f = lambda y: x * y

x = 3

g = lambda y: x * y

print(f(10)) # --> prints 30

print(g(10)) # --> prints 30

In this example, you might expect the call f(10) to print 20, reflecting the fact that
x was 2 at the time of definition. However, this is not the case. As a free variable, the
evaluation of f(10) uses whatever value x happens to have at the time of evaluation.
It could be different from the value it had when the lambda function was defined.
Sometimes this behavior is referred to as late binding.

If it’s important to capture the value of a variable at the time of definition, use a default
argument:

x = 2

f = lambda y, x=x: x * y

x = 3

g = lambda y, x=x: x * y

print(f(10)) # --> prints 20

print(g(10)) # --> prints 30

This works because default argument values are only evaluated at the time of function
definition and thus would capture the current value of x.

5.15 Higher-Order Functions
Python supports the concept of higher-order functions. This means that functions can be
passed as arguments to other functions, placed in data structures, and returned by a
function as a result. Functions are said to be first-class objects, meaning there is no difference
between how you might handle a function and any other kind of data. Here is an example
of a function that accepts another function as input and calls it after a time delay—for
example, to emulate the performance of a microservice in the cloud:

import time

def after(seconds, func):

time.sleep(seconds)

func()

Example usage

def greeting():

print('Hello World')

after(10, greeting) # Prints 'Hello World' after 10 seconds

116 Chapter 5 Functions

Here, the func argument to after() is an example of what’s known as a callback
function. This refers to the fact that the after() function “calls back” to the function
supplied as an argument.

When a function is passed as data, it implicitly carries information related to the
environment in which the function was defined. For example, suppose the greeting()

function makes use of a variable like this:

def main():

name = 'Guido'

def greeting():

print('Hello', name)

after(10, greeting) # Produces: 'Hello Guido'

main()

In this example, the variable name is used by greeting(), but it’s a local variable of the
outer main() function. When greeting is passed to after(), the function remembers its
environment and uses the value of the required name variable. This relies on a feature
known as a closure. A closure is a function along with an environment containing all of the
variables needed to execute the function body.

Closures and nested functions are useful when you write code based on the concept of
lazy or delayed evaluation. The after() function, shown above, is an illustration of this
concept. It receives a function that is not evaluated right away—that only happens at some
later point in time. This is a common programming pattern that arises in other contexts.
For example, a program might have functions that only execute in response to events—
key presses, mouse movement, arrival of network packets, and so on. In all of these cases,
function evaluation is deferred until something interesting happens. When the function
finally executes, a closure ensures that the function gets everything that it needs.

You can also write functions that create and return other functions. For example:

def make_greeting(name):

def greeting():

print('Hello', name)

return greeting

f = make_greeting('Guido')

g = make_greeting('Ada')

f() # Produces: 'Hello Guido'

g() # Produces: 'Hello Ada'

In this example, the make_greeting() function doesn’t carry out any interesting
computations. Instead, it creates and returns a function greeting() that does the actual
work. That only happens when that function gets evaluated later.

In this example, the two variables f and g hold two different versions of the greeting()

function. Even though the make_greeting() function that created those functions is no

5.15 Higher-Order Functions 117

longer executing, the greeting() functions still remember the name variable that was
defined—it’s part of each function’s closure.

One caution about closures is that binding to variable names is not a “snapshot” but a
dynamic process—meaning the closure points to the name variable and the value that it
was most recently assigned. This is subtle, but here’s an example that illustrates where
trouble can arise:

def make_greetings(names):

funcs = []

for name in names:

funcs.append(lambda: print('Hello', name))

return funcs

Try it

a, b, c = make_greetings(['Guido', 'Ada', 'Margaret'])

a() # Prints 'Hello Margaret'

b() # Prints 'Hello Margaret'

c() # Prints 'Hello Margaret'

In this example, a list of different functions is made (using lambda). It may appear as if
they are all using a unique value of name, as it changes on each iteration of a for loop. This
is not the case. All functions end up using the same value of name—the value it has when
the outer make_greetings() function returns.

This is probably unexpected and not what you want. If you want to capture a copy of a
variable, capture it as a default argument, as previously described:

def make_greetings(names):

funcs = []

for name in names:

funcs.append(lambda name=name: print('Hello', name))

return funcs

Try it

a, b, c = make_greetings(['Guido', 'Ada', 'Margaret'])

a() # Prints 'Hello Guido'

b() # Prints 'Hello Ada'

c() # Prints 'Hello Margaret'

In the last two examples, functions have been defined using lambda. This is often used
as a shortcut for creating small callback functions. However, it’s not a strict requirement.
You could have rewritten it like this:

def make_greetings(names):

funcs = []

for name in names:

def greeting(name=name):

print('Hello', name)

118 Chapter 5 Functions

funcs.append(greeting)

return funcs

The choice of when and where to use lambda is one of personal preference and a
matter of code clarity. If it makes code harder to read, perhaps it should be avoided.

5.16 Argument Passing in Callback
Functions

One challenging problem with callback functions is that of passing arguments to the
supplied function. Consider the after() function written earlier:

import time

def after(seconds, func):

time.sleep(seconds)

func()

In this code, func() is hardwired to be called with no arguments. If you want to pass
extra arguments, you’re out of luck. For example, you might try this:

def add(x, y):

print(f'{x} + {y} -> {x+y}')

return x + y

after(10, add(2, 3)) # Fails: add() called immediately

In this example, the add(2, 3) function runs immediately, returning 5. The after()

function then crashes 10 seconds later as it tries to execute 5(). That is definitely not what
you intended. Yet there seems to be no obvious way to make it work if add() is called
with its desired arguments.

This problem hints towards a greater design issue concerning the use of functions and
functional programming in general—function composition. When functions are mixed
together in various ways, you need to think about how function inputs and outputs
connect together. It is not always simple.

In this case, one solution is to package up computation into a zero-argument function
using lambda. For example:

after(10, lambda: add(2, 3))

A small zero-argument function like this is sometimes known as a thunk. Basically, it’s an
expression that will be evaluated later when it’s eventually called as a zero-argument
function. This can be a general-purpose way to delay the evaluation of any expression to a
later point in time: put the expression in a lambda and call the function when you actually
need the value.

5.16 Argument Passing in Callback Functions 119

As an alternative to using lambda, you could use functools.partial() to create a
partially evaluated function like this:

from functools import partial

after(10, partial(add, 2, 3))

partial() creates a callable where one or more of the arguments have already been
specified and are cached. It can be a useful way to make nonconforming functions match
expected calling signatures in callbacks and other applications. Here are a few more
examples of using partial():

def func(a, b, c, d):

print(a, b, c, d)

f = partial(func, 1, 2) # Fix a=1, b=2

f(3, 4) # func(1, 2, 3, 4)

f(10, 20) # func(1, 2, 10, 20)

g = partial(func, 1, 2, d=4) # Fix a=1, b=2, d=4

g(3) # func(1, 2, 3, 4)

g(10) # func(1, 2, 10, 4)

partial() and lambda can be used for similar purposes, but there is an important
semantic distinction between the two techniques. With partial(), the arguments are
evaluated and bound at the time the partial function is first defined. With a zero-argument
lambda, the arguments are evaluated and bound when the lambda function actually
executes later (the evaluation of everything is delayed). To illustrate:

>>> def func(x, y):

... return x + y

...

>>> a = 2

>>> b = 3

>>> f = lambda: func(a, b)

>>> g = partial(func, a, b)

>>> a = 10

>>> b = 20

>>> f() # Uses current values of a, b

30

>>> g() # Uses initial values of a, b

5

>>>

Since partials are fully evaluated, the callables created by partial() are objects that can
be serialized into bytes, saved in files, and even transmitted across network connections (for
example, using the pickle standard library module). This is not possible with a lambda

120 Chapter 5 Functions

function. Thus, in applications where functions are passed around, possibly to Python
interpreters running in different processes or on different machines, you’ll find partial()

to be a bit more adaptable.
As an aside, partial function application is closely related to a concept known as currying.

Currying is a functional programming technique where a multiple-argument function is
expressed as a chain of nested single-argument functions. Here is an example:

Three-argument function

def f(x, y, z):

return x + y + z

Curried version

def fc(x):

return lambda y: (lambda z: x + y + z)

Example use

a = f(2, 3, 4) # Three-argument function

b = fc(2)(3)(4) # Curried version

This is not a common Python programming style and there are few practical reasons
for doing it. However, sometimes you’ll hear the word “currying” thrown about in
conversations with coders who’ve spent too much time warping their brains with things
like lambda calculus. This technique of handling multiple arguments is named in honor
of the famous logician Haskell Curry. Knowing what it is might be useful—should you
stumble into a group of functional programmers having a heated flamewar at a social event.

Getting back to the original problem of argument passing, another option for passing
arguments to a callback function is to accept them separately as arguments to the outer
calling function. Consider this version of the after() function:

def after(seconds, func, *args):

time.sleep(seconds)

func(*args)

after(10, add, 2, 3) # Calls add(2, 3) after 10 seconds

You will notice that passing keyword arguments to func() is not supported. This is
by design. One issue with keyword arguments is that the argument names of the given
function might clash with argument names already in use (that is, seconds and func).
Keyword arguments might also be reserved for specifying options to the after() function
itself. For example:

def after(seconds, func, *args, debug=False):

time.sleep(seconds)

if debug:

print('About to call', func, args)

func(*args)

5.17 Returning Results from Callbacks 121

All is not lost, however. If you need to specify keyword arguments to func(), you can
still do it using partial(). For example:

after(10, partial(add, y=3), 2)

If you wanted the after() function to accept keyword arguments, a safe way to do it
might be to use positional-only arguments. For example:

def after(seconds, func, debug=False, /, *args, **kwargs):

time.sleep(seconds)

if debug:

print('About to call', func, args, kwargs)

func(*args, **kwargs)

after(10, add, 2, y=3)

Another possibly unsettling insight is that after() actually represents two different
function calls merged together. Perhaps the problem of passing arguments can be
decomposed into two functions like this:

def after(seconds, func, debug=False):

def call(*args, **kwargs):

time.sleep(seconds)

if debug:

print('About to call', func, args, kwargs)

func(*args, **kwargs)

return call

after(10, add)(2, y=3)

Now, there are no conflicts whatsoever between the arguments to after() and the
arguments to func. However, there is a chance that doing this will introduce a conflict
between you and your coworkers.

5.17 Returning Results from Callbacks
Another problem not addressed in the previous section is that of returning the results of
the calculation. Consider this modified after() function:

def after(seconds, func, *args):

time.sleep(seconds)

return func(*args)

This works, but there are some subtle corner cases that arise from the fact that two
separate functions are involved—the after() function itself and the supplied
callback func.

One issue concerns exception handling. For example, try these two examples:

122 Chapter 5 Functions

after("1", add, 2, 3) # Fails: TypeError (integer is expected)

after(1, add, "2", 3) # Fails: TypeError (can't concatenate int to str)

A TypeError is raised in both cases, but it’s for very different reasons and in different
functions. The first error is due to a problem in the after() function itself: A bad
argument is being given to time.sleep(). The second error is due to a problem with the
execution of the callback function func(*args).

If it’s important to distinguish between these two cases, there are a few options for that.
One option is to rely on chained exceptions. The idea is to package errors from the
callback in a different way that allows them to be handled separately from other kinds of
errors. For example:

class CallbackError(Exception):

pass

def after(seconds, func, *args):

time.sleep(seconds)

try:

return func(*args)

except Exception as err:

raise CallbackError('Callback function failed') from err

This modified code isolates errors from the supplied callback into its own exception
category. Use it like this:

try:

r = after(delay, add, x, y)

except CallbackError as err:

print("It failed. Reason", err.__cause__)

If there was a problem with the execution of after() itself, that exception would
propagate out, uncaught. On the other hand, problems related to the execution of the
supplied callback function would be caught and reported as a CallbackError. All of this is
quite subtle, but in practice, managing errors is hard. This approach makes the attribution
of blame more precise and the behavior of after() easier to document. Specifically, if
there is a problem in the callback, it’s always reported as a CallbackError.

Another option is to package the result of the callback function into some kind of result
instance that holds both a value and an error. For example, define a class like this:

class Result:

def __init__(self, value=None, exc=None):

self._value = value

self._exc = exc

def result(self):

if self._exc:

raise self._exc

5.17 Returning Results from Callbacks 123

else:

return self._value

Then, use this class to return results from the after() function:

def after(seconds, func, *args):

time.sleep(seconds)

try:

return Result(value=func(*args))

except Exception as err:

return Result(exc=err)

Example use:

r = after(1, add, 2, 3)

print(r.result()) # Prints 5

s = after("1", add, 2, 3) # Immediately raises TypeError. Bad sleep() arg.

t = after(1, add, "2", 3) # Returns a "Result"

print(t.result()) # Raises TypeError

This second approach works by deferring the result reporting of the callback function
to a separate step. If there is a problem with after(), it gets reported immediately. If there
is a problem with the callback func(), that gets reported when a user tries to obtain the
result by calling the result() method.

This style of boxing a result into a special instance to be unwrapped later is an
increasingly common pattern found in modern programming languages. One reason for
its use is that it facilitates type checking. For example, if you were to put a type hint on
after(), its behavior is fully defined—it always returns a Result and nothing else:

def after(seconds, func, *args) -> Result:

...

Although it’s not so common to see this kind of pattern in Python code, it does arise
with some regularity when working with concurrency primitives such as threads and
processes. For example, instances of a so-called Future behave like this when working with
thread pools. For example:

from concurrent.futures import ThreadPoolExecutor

pool = ThreadPoolExecutor(16)

r = pool.submit(add, 2, 3) # Returns a Future

print(r.result()) # Unwrap the Future result

124 Chapter 5 Functions

5.18 Decorators
A decorator is a function that creates a wrapper around another function. The primary
purpose of this wrapping is to alter or enhance the behavior of the object being wrapped.
Syntactically, decorators are denoted using the special @ symbol as follows:

@decorate

def func(x):

...

The preceding code is shorthand for the following:

def func(x):

...

func = decorate(func)

In the example, a function func() is defined. However, immediately after its definition,
the function object itself is passed to the function decorate(), which returns an object
that replaces the original func.

As an example of a concrete implementation, here is a decorator @trace that adds
debugging messages to a function:

def trace(func):

def call(*args, **kwargs):

print('Calling', func.__name__)

return func(*args, **kwargs)

return call

Example use

@trace

def square(x):

return x * x

In this code, trace() creates a wrapper function that writes some debugging output
and then calls the original function object. Thus, if you call square(), you will see the
output of the print() function in the wrapper.

If only it were so easy! In practice, functions also contain metadata such as the function
name, doc string, and type hints. If you put a wrapper around a function, this information
gets hidden. When writing a decorator, it’s considered best practice to use the @wraps()

decorator as shown in this example:

from functools import wraps

def trace(func):

@wraps(func)

def call(*args, **kwargs):

print('Calling', func.__name__)

5.18 Decorators 125

return func(*args, **kwargs)

return call

The @wraps() decorator copies various function metadata to the replacement function.
In this case, metadata from the given function func() is copied to the returned wrapper
function call().

When decorators are applied, they must appear on their own line immediately prior to
the function. More than one decorator can be applied. Here’s an example:

@decorator1

@decorator2

def func(x):

pass

In this case, the decorators are applied as follows:

def func(x):

pass

func = decorator1(decorator2(func))

The order in which decorators appear might matter. For example, in class definitions,
decorators such as @classmethod and @staticmethod often have to be placed at the
outermost level. For example:

class SomeClass(object):

@classmethod # Yes

@trace

def a(cls):

pass

@trace # No. Fails.

@classmethod

def b(cls):

pass

The reason for this placement restriction has to do with the values returned by
@classmethod. Sometimes a decorator returns an object that’s different than a normal
function. If the outermost decorator isn’t expecting this, things can break. In this case,
@classmethod creates a classmethod descriptor object (see Chapter 7). Unless the @trace

decorator was written to account for this, it will fail if decorators are listed in the wrong
order.

A decorator can also accept arguments. Suppose you want to change the @trace

decorator to allow for a custom message like this:

@trace("You called {func.__name__}")

def func():

pass

126 Chapter 5 Functions

If arguments are supplied, the semantics of the decoration process is as follows:

def func():

pass

Create the decoration function

temp = trace("You called {func.__name__}")

Apply it to func

func = temp(func)

In this case, the outermost function that accepts the arguments is responsible for creating
a decoration function. That function is then called with the function to be decorated to
obtain the final result. Here’s what the decorator implementation might look like:

from functools import wraps

def trace(message):

def decorate(func):

@wraps(func)

def wrapper(*args, **kwargs):

print(message.format(func=func))

return func(*args, **kwargs)

return wrapper

return decorate

One interesting feature of this implementation is that the outer function is actually a
kind of a “decorator factory.” Suppose you found yourself writing code like this:

@trace('You called {func.__name__}')

def func1():

pass

@trace('You called {func.__name__}')

def func2():

pass

That would quickly get tedious. You could simplify it by calling the outer decorator
function once and reusing the result like this:

logged = trace('You called {func.__name__}')

@logged

def func1():

pass

5.19 Map, Filter, and Reduce 127

@logged

def func2():

pass

Decorators don’t necessarily have to replace the original function. Sometimes a
decorator merely performs an action such as registration. For example, if you are building
a registry of event handlers, you could define a decorator that works like this:

@eventhandler('BUTTON')

def handle_button(msg):

...

@eventhandler('RESET')

def handle_reset(msg):

...

Here’s a decorator that manages it:

Event handler decorator

_event_handlers = { }

def eventhandler(event):

def register_function(func):

_event_handlers[event] = func

return func

return register_function

5.19 Map, Filter, and Reduce
Programmers familiar with functional languages often inquire about common list
operations such as map, filter, and reduce. Much of this functionality is provided by list
comprehensions and generator expressions. For example:

def square(x):

return x * x

nums = [1, 2, 3, 4, 5]

squares = [square(x) for x in nums] # [1, 4, 9, 16, 25]

Technically, you don’t even need the short one-line function. You could write:

squares = [x * x for x in nums]

Filtering can also be performed with a list comprehension:

a = [x for x in nums if x > 2] # [3, 4, 5]

128 Chapter 5 Functions

If you use a generator expression, you’ll get a generator that produces the results
incrementally through iteration. For example:

squares = (x*x for x in nums) # Creates a generator

for n in squares:

print(n)

Python provides a built-in map() function that is the same as mapping a function with a
generator expression. For example, the above example could be written:

squares = map(lambda x: x*x, nums)

for n in squares:

print(n)

The built-in filter() function creates a generator that filters values:

for n in filter(lambda x: x > 2, nums):

print(n)

If you want to accumulate or reduce values, you can use functools.reduce(). For
example:

from functools import reduce

total = reduce(lambda x, y: x + y, nums)

In its general form, reduce() accepts a two-argument function, an iterable, and an
initial value. Here are a few examples:

nums = [1, 2, 3, 4, 5]

total = reduce(lambda x, y: x + y, nums) # 15

product = reduce(lambda x, y: x * y, nums, 1) # 120

pairs = reduce(lambda x, y: (x, y), nums, None)

(((((None, 1), 2), 3), 4), 5)

reduce() accumulates values left-to-right on the supplied iterable. This is known as a
left-fold operation. Here is pseudocode for reduce(func, items, initial):

def reduce(func, items, initial):

result = initial

for item in items:

result = func(result, item)

return result

Using reduce() in practice may be confusing. Moreover, common reduction
operations such as sum(), min(), and max() are already built-in. Your code will be easier
to follow (and likely run faster) if you use one of those instead of trying to implement
common operations with reduce().

5.20 Function Introspection, Attributes, and Signatures 129

5.20 Function Introspection, Attributes,
and Signatures

As you have seen, functions are objects—which means they can be assigned to variables,
placed in data structures, and used in the same way as any other kind of data in a program.
They can also be inspected in various ways. Table 5.1 shows some common attributes of
functions. Many of these attributes are useful in debugging, logging, and other operations
involving functions.

Table 5.1 Function Attributes

Attribute Description

f.__name__ Function name

f.__qualname__ Fully qualified name (if nested)

f.__module__ Name of module in which defined

f.__doc__ Documentation string

f.__annotations__ Type hints

f.__globals__ Dictionary that is the global namespace

f.__closure__ Closure variables (if any)

f.__code__ Underlying code object

The f.__name__ attribute contains the name that was used when defining a function.
f.__qualname__ is a longer name that includes additional information about the
surrounding definition environment.

The f.__module__ attribute is a string that holds the module name in which the
function was defined. The f.__globals__ attribute is a dictionary that serves as the global
namespace for the function. It is normally the same dictionary that’s attached to the
associated module object.

f.__doc__ holds the function documentation string. The f.__annotations__ attribute
is a dictionary that holds type hints, if any.

f.__closure__ holds references to the values of closure variables for nested functions.
These are a bit buried, but the following example shows how to view them:

def add(x, y):

def do_add():

return x + y

return do_add

>>> a = add(2, 3)

>>> a.__closure__

(<cell at 0x10edf1e20: int object at 0x10ecc1950>,

<cell at 0x10edf1d90: int object at 0x10ecc1970>)

>>> a.__closure__[0].cell_contents

130 Chapter 5 Functions

2

>>>

The f.__code__ object represents the compiled interpreter bytecode for the
function body.

Functions can have arbitrary attributes attached to them. Here’s an example:

def func():

statements

func.secure = 1

func.private = 1

Attributes are not visible within the function body—they are not local variables and do
not appear as names in the execution environment. The main use of function attributes is
to store extra metadata. Sometimes frameworks or various metaprogramming techniques
utilize function tagging—that is, attaching attributes to functions. One example is the
@abstractmethod decorator that’s used on methods within abstract base classes. All that
decorator does is attach an attribute:

def abstractmethod(func):

func.__isabstractmethod__ = True

return func

Some other bit of code (in this case, a metaclass) looks for this attribute and uses it to
add extra checks to instance creation.

If you want to know more about a function’s parameters, you can obtain its signature
using the inspect.signature() function:

import inspect

def func(x: int, y:float, debug=False) -> float:

pass

sig = inspect.signature(func)

Signature objects provide many convenient features for printing and obtaining detailed
information about the parameters. For example:

Print out the signature in a nice form

print(sig) # Produces (x: int, y: float, debug=False) -> float

Get a list of argument names

print(list(sig.parameters)) # Produces ['x', 'y', 'debug']

Iterate over the parameters and print various metadata

for p in sig.parameters.values():

print('name', p.name)

5.21 Environment Inspection 131

print('annotation', p.annotation)

print('kind', p.kind)

print('default', p.default)

A signature is metadata that describes the nature of a function—how you would call it,
type hints, and so on. There are various things that you might do with a signature. One
useful operation on signatures is comparison. For example, here’s how you check to see if
two functions have the same signature:

def func1(x, y):

pass

def func2(x, y):

pass

assert inspect.signature(func1) == inspect.signature(func2)

This kind of comparison might be useful in frameworks. For example, a framework
could use signature comparison to see if you’re writing functions or methods that conform
to an expected prototype.

If stored in the __signature__ attribute of a function, a signature will be shown in help
messages and returned on further uses of inspect.signature(). For example:

def func(x, y, z=None):

...

func.__signature__ = inspect.signature(lambda x,y: None)

In this example, the optional argument z would be hidden in further inspection of
func. Instead, the attached signature would be returned by inspect.signature().

5.21 Environment Inspection
Functions can inspect their execution environment using the built-in functions globals()
and locals(). globals() returns the dictionary that’s serving as the global namespace.
This is the same as the func.__globals__ attribute. This is usually the same dictionary
that’s holding the contents of the enclosing module. locals() returns a dictionary
containing the values of all local and closure variables. This dictionary is not the actual data
structure used to hold these variables. Local variables can come from outer functions (via a
closure) or be defined internally. locals() collects all of these variables and puts them into
a dictionary for you. Changing an item in the locals() dictionary has no effect on the
underlying variable. For example:

def func():

y = 20

locs = locals()

132 Chapter 5 Functions

locs['y'] = 30 # Try to change y

print(locs['y']) # Prints 30

print(y) # Prints 20

If you wanted a change to take effect, you’d have to copy it back into the local variable
using normal assignment.

def func():

y = 20

locs = locals()

locs['y'] = 30

y = locs['y']

A function can obtain its own stack frame using inspect.currentframe(). A function
can obtain the stack frame of its caller by following the stack trace through f.f_back

attributes on the frame. Here is an example:

import inspect

def spam(x, y):

z = x + y

grok(z)

def grok(a):

b = a * 10

outputs: {'a':5, 'b':50 }

print(inspect.currentframe().f_locals)

outputs: {'x':2, 'y':3, 'z':5 }

print(inspect.currentframe().f_back.f_locals)

spam(2, 3)

Sometimes you will see stack frames obtained using the sys._getframe() function
instead. For example:

import sys

def grok(a):

b = a * 10

print(sys._getframe(0).f_locals) # myself

print(sys._getframe(1).f_locals) # my caller

The attributes in Table 5.2 can be useful for inspecting frames.

5.22 Dynamic Code Execution and Creation 133

Table 5.2 Frame Attributes

Attribute Description

f.f_back Previous stack frame (toward the caller)

f.f_code Code object being executed

f.f_locals Dictionary of local variables (locals())

f.f_globals Dictionary used for global variables (globals())

f.f_builtins Dictionary used for built-in names

f.f_lineno Line number

f.f_lasti Current instruction. This is an index into the bytecode string of f_code.

f.f_trace Function called at start of each source code line

Looking at stack frames is useful for debugging and code inspection. For example,
here’s an interesting debug function that lets you view the values of the selected variables
of the caller:

import inspect

from collections import ChainMap

def debug(*varnames):

f = inspect.currentframe().f_back

vars = ChainMap(f.f_locals, f.f_globals)

print(f'{f.f_code.co_filename}:{f.f_lineno}')

for name in varnames:

print(f' {name} = {vars[name]!r}')

Example use

def func(x, y):

z = x + y

debug('x','y') # Shows x and y along with file/line

return z

5.22 Dynamic Code Execution and
Creation

The exec(str [, globals [, locals]]) function executes a string containing arbitrary
Python code. The code supplied to exec() is executed as if the code actually appeared in
place of the exec operation. Here’s an example:

a = [3, 5, 10, 13]

exec('for i in a: print(i)')

http://f'{f.f_code.co_filename}:{f.f_lineno}'

134 Chapter 5 Functions

The code given to exec() executes within the local and global namespace of the caller.
However, be aware that changes to local variables have no effect. For example:

def func():

x = 10

exec("x = 20")

print(x) # Prints 10

The reasons for this have to do with the locals being a dictionary of collected local
variables, not the actual local variables (see the previous section for more detail).

Optionally, exec() can accept one or two dictionary objects that serve as the global and
local namespaces for the code to be executed, respectively. Here’s an example:

globs = {'x': 7,

'y': 10,

'birds': ['Parrot', 'Swallow', 'Albatross']

}

locs = { }

Execute using the above dictionaries as the global and local namespace

exec('z = 3 * x + 4 * y', globs, locs)

exec('for b in birds: print(b)', globs, locs)

If you omit one or both namespaces, the current values of the global and local
namespaces are used. If you only provide a dictionary for globals, it’s used for both the
globals and locals.

A common use of dynamic code execution is for creating functions and methods. For
example, here’s a function that creates an __init__() method for a class given a list of
names:

def make_init(*names):

parms = ','.join(names)

code = f'def __init__(self, {parms}):\n'

for name in names:

code += f' self.{name} = {name}\n'

d = { }

exec(code, d)

return d['__init__']

Example use

class Vector:

__init__ = make_init('x','y','z')

This technique is used in various parts of the standard library. For example,
namedtuple(), @dataclass, and similar features all rely on dynamic code creation with
exec().

5.23 Asynchronous Functions and await 135

5.23 Asynchronous Functions and await
Python provides a number of language features related to the asynchronous execution of
code. These include so-called async functions (or coroutines) and awaitables. They are mostly
used by programs involving concurrency and the asyncio module. However, other
libraries may also build upon these.

An asynchronous function, or coroutine function, is defined by prefacing a normal
function definition with the extra keyword async. For example:

async def greeting(name):

print(f'Hello {name}')

If you call such a function, you’ll find that it doesn’t execute in the usual way—in fact,
it doesn’t execute at all. Instead, you get an instance of a coroutine object in return. For
example:

>>> greeting('Guido')

<coroutine object greeting at 0x104176dc8>

>>>

To make the function run, it must execute under the supervision of other code. A
common option is asyncio. For example:

>>> import asyncio

>>> asyncio.run(greeting('Guido'))

Hello Guido

>>>

This example brings up the most important feature of asynchronous functions—that
they never execute on their own. Some kind of manager or library code is always required
for their execution. It’s not necessarily asyncio as shown, but something is always involved
in making async functions run.

Aside from being managed, an asynchronous function evaluates in the same manner
as any other Python function. Statements run in order and all of the usual control-flow
features work. If you want to return a result, use the usual return statement. For example:

async def make_greeting(name):

return f'Hello {name}'

The value given to return is returned by the outer run() function used to execute the
async function. For example:

>>> import asyncio

>>> a = asyncio.run(make_greeting('Paula'))

>>> a

'Hello Paula'

>>>

Async functions can call other async functions using an await expression like this:

136 Chapter 5 Functions

async def make_greeting(name):

return f'Hello {name}'

async def main():

for name in ['Paula', 'Thomas', 'Lewis']:

a = await make_greeting(name)

print(a)

Run it. Will see greetings for Paula, Thomas, and Lewis

asyncio.run(main())

Use of await is only valid within an enclosing async function definition. It’s also a
required part of making async functions execute. If you leave off the await, you’ll find that
the code breaks.

The requirement of using await hints at a general usage issue with asynchronous
functions. Namely, their different evaluation model prevents them from being used in
combination with other parts of Python. Specifically, it is never possible to write code that
calls an async function from a non-async function:

async def twice(x):

return 2 * x

def main():

print(twice(2)) # Error. Doesn't execute the function.

print(await twice(2)) # Error. Can't use await here.

Combining async and non-async functionality in the same application is a complex
topic, especially if you consider some of the programming techniques involving
higher-order functions, callbacks, and decorators. In most cases, support for asynchronous
functions has to be built as a special case.

Python does precisely this for the iterator and context manager protocols. For example,
an asynchronous context manager can be defined using __aenter__() and __aexit__()

methods on a class like this:

class AsyncManager(object):

def __init__(self, x):

self.x = x

async def yow(self):

pass

async def __aenter__(self):

return self

async def __aexit__(self, ty, val, tb):

pass

5.24 Final Words: Thoughts on Functions and Composition 137

Note that these methods are async functions and can thus execute other async functions
using await. To use such a manager, you must use the special async with syntax that is
only legal within an async function:

Example use

async def main():

async with AsyncManager(42) as m:

await m.yow()

asyncio.run(main())

A class can similarly define an async iterator by defining methods __aiter__() and
__anext__(). These are used by the async for statement which also may only appear
inside an async function.

From a practical point of view, an async function behaves exactly the same as a normal
function—it’s just that it has to execute within a managed environment such as asyncio.
Unless you’ve made a conscious decision to work in such an environment, you should
move along and ignore async functions. You’ll be a lot happier.

5.24 Final Words: Thoughts on Functions
and Composition

Any system is built as a composition of components. In Python, these components include
various sorts of libraries and objects. However, underlying everything are functions.
Functions are the glue by which a system is put together and the basic mechanism of
moving data around.

Much of the discussion in this chapter focused on the nature of functions and their
interfaces. How are the inputs presented to a function? How are the outputs handled?
How are errors reported? How can all of these things be more tightly controlled and better
understood?

The interaction of functions as a potential source of complexity is worth thinking about
when working on larger projects. It can often mean the difference between an intuitive
easy-to-use API and a mess.

Index

() (parentheses)
for functions, 22, 56, 101
for tuples, 15

* (star)
in function arguments, 102–104, 108–109
in module imports, 229–230, 240–241
in variable names, 46
operator, 5, 38–40, 47, 57, 298, 307, 310, 313

** (double star)
in function arguments, 104, 108–109
operator, 5, 40, 56, 57

*=, **= operators, 7, 41
+ (plus sign)

in file modes, 258
in numbers converted to text strings, 250–251
operator, 5, 10–11, 14, 38–40, 47, 57, 91, 298,

307, 310, 313
+= operator, 7, 41, 92, 111
, (comma)

in numbers converted to text strings, 250–251
separating values, 276

- (minus sign)
in byte formatting, 253
in numbers converted to text strings, 250–251
operator, 5, 18, 39–40, 50, 57, 309

-= operator, 7, 41, 92
. (dot) operator, 56, 79, 154
.. (double dots), in relative imports, 237
... (ellipsis), in extended slices, 96
/ (slash)

as path separator, 281
in function signature, 105
operator, 5, 40, 57

// operator, 5, 40, 57
/=, //= operators, 7, 41
: (colon)

for dictionaries, 18
for slicing operator, 10, 47–49

:= operator, 8, 12, 39, 54, 57

= operator, 3, 51

== operator, 6, 42, 57, 93

testing for None with, 87

[] (square brackets), 13

comments, 2

% (percent sign)

in byte formatting, 253

in numbers converted to text strings, 251

operator, 5, 9, 39–40, 57, 298, 310

%=, &=, ^= operators, 7, 41

&, ^ operators, 6, 18, 40, 50, 57, 309

_ (undescore)

as variable, 2, 17, 46, 61

in function names, 106

in names of internal variables, 27

in numeric literals, 38

in private attribute and method names, 176

__ (double undescore)

in attribute names, 177–179

in method names, 27, 88

~ operator, 6, 40, 57

\ (backslash), as path separator, 281

| operator, 6, 18, 40, 50, 57, 302, 309

|= operator, 7, 41

>, < operators, 6, 42, 57

>=, <= operators, 6, 42, 57, 93

>>, << operators, 6, 40, 57

>>=, <<= operators, 7, 41

>>> prompt, 1

{ } (curly braces), 20

for dictionaries, 18

in f-strings, 252

ABC base class, 185

abc module, 185

322 Index

abs() function, 5, 40, 297
__abs__() method, 91
@abstractmethod decorator, 130, 185
__abstractmethods__ attribute, 222
add() method, 18, 50, 309
__add__() method, 27, 80, 90–91
addition, 5
__aenter__(), __aexit__() methods, 136
__aiter__(), __anext__() methods, 137
all() function, 47, 297
__all__ variable, 229, 240–241
and operator, 6–7, 43, 57, 92
__and__() method, 90
annotations, 23
__annotations__ attribute, 107, 129, 222, 242
any() function, 47, 297
append() method, 13, 26, 300, 307, 313
applicative evaluation order, 101
archives, working with, 284
argparse module, 33, 255
args attribute, 64–65, 70–315
arguments, see functions, arguments of
arithmetic operators, 5, 40
ArithmeticError exception, 67–68, 314–318
as qualifier, 31, 64, 75, 99, 226
as_integer_ratio() method, 303
ascii() function, 253, 297
asctime() function, 293
assert statement, 77–78
AssertionError exception, 68, 77, 315
assignment expression operator, see := operator
assignments, 38–39, 41, 83

augmented, 7, 41, 47, 92, 111
async for, async with statements, 137
async keyword, 135, 136
asyncio module, 135, 137, 151, 271–274, 285
atexit module, 26
AttributeError exception, 68, 98, 207, 304, 315
attributes, 79, 98

binding, 167, 207–208

deleting, 301

fully qualified, 158

internal, 177–179

lazy evaluation of, 214

no type contraints on, 179

of classes, 308

of functions, 129–130
of objects, 157–158, 304, 310
public, 176

await statement, 135–137, 151
awaitables, 135

banker’s rounding, 5
base classes, 160

abstract, 185–188
invoking menthods of, 313
linking to, 207
__slots__ variable and, 210
tuple of, 222
used for type hinting, 184–185

base64 module, 274
BaseException exception, 67–68, 314
__bases__ attribute, 207, 222
bash shell, 1
bin() function, 37, 297
binary data structures, 288
binary integers, 6
binascii module, 274
bit manipulation, 6
bit_length() method, 305
bitwise operators, 6, 40, 57
blocking, 269–273
BlockingIOError exception, 270, 316
bool class, 297
bool type, 298
__bool__() method, 93–95
Boolean values, 6–7, 38, 43–44, 297
bound methods, 158, 183
break statement, 8, 12, 62–63, 141
breakpoint() function, 298
BrokenPipeError exception, 316
BSD socket interface, 286
BufferedXXX classes, 260
BufferError exception, 315
byte arrays, 247, 266, 298–300
bytearray type, 247, 298
bytes, 247–248

comparing, 43
converting to text, 274
formatting, 253–254
operations on, 298–300
serializing objects into, 268

 Index 323

bytes module, 274
bytes type, 247–248, 298
__bytes__() method, 94–95
BytesIO class, 280

C programming language, 281, 286, 288
__call__() method, 98, 219
callable() function, 301
callback functions, 114, 116

passing arguments to, 118–121
returning results from, 121–123

CallbackError exception, 122
capitalize() method, 298, 310
casefold() method, 310
category() function, 295
__cause__ attribute, 65, 71–73, 315
__ceil__() method, 91
center() method, 298, 310
cgi module, 275
characters

end of file (EOF), 2, 68, 315
line-feed, see newline characters
ordinal values of, 307

check_output() function, 288–289
child classes, see subclasses
ChildProcessError exception, 316
chr() function, 301
circular dependency, 82
class methods, 89, 170–172, 222, 301
class statement, 27, 154–155, 215–218

base-class names in, 160
class variables, 169–172, 222

mutating, 112
__class__ attribute, 206, 223
classes, 80, 153–223

adding methods to, 28
body of, 215
built-in, 313
creating, 160, 215–218
duplicating definitions of, 221
extending, 160
inspecting, 318
internal variables in, 27
linking instances to, 206, 223
membership testing for, 183
names of, 222

namespace of, 215, 218
static methods in, 173
type-checking, 162
uniformity of, 183
user-defined, 179, 206–207
with a single method, 166

classmethod object, 125
@classmethod decorator, 125, 170–171, 183, 197,

213, 301
classobj type, 305
cleanup, 66, 141
clear() method, 300, 302, 309
click module, 255
close() method, 12, 147, 202, 258, 262, 315
closed attribute, 263
__closure__ attribute, 129
closures, 116–117, 129
cls object, 125, 171, 220, 222
code, see also programs

generating, 222, 233
Pythonic, 99–100, 160, 176
readability of, 103, 223
testing, 223

code-checking tools, 87, 107
__code__ attribute, 129–130
collect() function, 82
collections module, 20, 81, 168, 240, 318
comma-separated values (CSVs), 276
command-line options, 15, 33, 254–255, 317, 319
comments, 2

extracting, 55
comparisons, 6, 42, 93

between bytes and text, 248
compile() function, 301
complex() function, 301
__complex__() method, 94–95, 301
compound-interest calculation, 4
compute_usage() function, 282–283
concatenation, 47

of tuples, 16
concurrency, 148, 269, 273, 291–293
conditionals, 4, 7–9, 44–45, 59–60
configparser module, 276
conjugate() method, 303, 305
ConnectionXXXError exceptions, 316
containers, 95–96
__contains__() method, 95–96

324 Index

context managers, 75–77, 99
asynchronous, 136–137
cleaning up with, 141

__context__ attribute, 65, 72–73, 315
contextlib module, 77, 148
@contextmanager decorator, 148
continue statement, 8, 62–63
control flow

with conditionals, 7–9, 59–60
with exceptions, 64–69, 77
with loops, 60–63

copy() method, 300, 302, 309
copying, of sequences, 47–48
coroutines, 135

generator-based, 146
inspecting, 318

cos() function, 318
count() method, 298, 307, 310, 313
Counter class, 318
cryptographic hash values, 278
csv module, 31, 276
ctime() function, 293
currentframe() function, 132

daemon flag, 291
data encapsulation, 176
data hiding, 178
@dataclass decorator, 134
dataclasses, 196, 233
datetime module, 293, 318
deadlocks, 25, 204
debug variable, 215
debug() function, 133, 281
debugging

breakpoint for, 298
error messages for, 66, 124
exception handling and, 74
in Python development environment, 3
introducing code for, 77–78
logging for, 280
making output for, 162
modules individually, 235
smaller tasks, 145
stack frames and, 133
when using dictionaries, 21
with __dict__ attribute, 211

with repr(), 11

with __repr__(), 28, 196

decode() method, 248, 259, 298, 310

decorators, 104, 124–127, 194–197, 220

deep copies, 83

deepcopy() function, 84

def statement, 22, 27, 101

DEFAULT_BUFFER_SIZE value, 259

defaultdict class, 318

del statement, 19, 50–51, 82–83, 89, 202, 207,
300–302, 307

__del__() method, 89, 201–206

delattr() function, 157, 179, 301

__delattr__() method, 98, 207

delegation, 208–210

__delete__() method, 211

__delitem__() method, 95–96

dependency injection, 165, 176

deque class, 81, 318

descriptors, 211–214, 220, 285

Design Patterns book, 176

detach() method, 261

dict type, 80, 301–302

dict() function, 20, 51, 168

__dict__ attribute, 206–207, 211, 215, 222–223,
242, 302, 313

dictionaries, 18–21

accessing members of, 18

adding unusual items to, 85–87

as literals, 38

assignments on, 83

converting to lists, 20

creating, 18, 20, 53–54

deep vs. shallow copies of, 83

dispatching through, 193

empty, 20, 43

initializing missing items automatically, 318

inserting objects into, 18

iterating over, 21

keys of, 20–21, 294–295

modifying objects of, 18

nested, 19

no ordered comparisons on, 43

number of items in, 306

operations on, 51, 301–302

passed as function parameters, 107

removing elements from, 19, 104

 Index 325

using tuples in, 19

values of, 21

dictionary comprehension, 20, 53–54

dictionary lookups, 176

DictReader class, 277

difference operation, 18, 50, 309

difference() method, 309

difference_update() method, 309

dir() function, 26, 31, 302

__dir__() method, 302

directories, 264

current working, 234

temporary, 289

discard() method, 18, 50, 309

distutils module, 243

division, 5, 303

divmod() function, 5, 40, 303

__divmod__() method, 90

Django library, 279

__doc__ attribute, 106, 129, 222, 242

docopt module, 255

documentation strings, 106, 129, 155, 222, 242

dot operator, see . operator

double-ended queues, 318

duck typing, 167

dump() function, 268

dumps() function, 280

dynamic binding, 167

e, E, in numbers, 37

echo servers, 286

.egg suffix, 234

elif statement, 7–8, 59–60, 193

Ellipsis object, 96

else statement, 7–9, 44–45, 57, 59–60, 63, 66,
193

emails, sending, 285

encode() method, 248, 259, 310

encoding attribute, 13, 259–260, 263

encodings, 248–249, 263

end keyword, 265, 308

endswith() method, 10, 298, 311

__enter__() method, 75, 99, 148

enumerate() function, 61, 303

env command, 256

environment variables, 256

EnvironmentError exception, 314–316

EOF (end of file) character, 2, 68, 315

EOFError exception, 68, 315

epoll() function, 285

__eq__() method, 93–94

errno attribute, 316

errno module, 277–278

errors

handling, 110–111

logging, 66

errors attribute, 259–260, 263

eval() function, 89, 301, 303, 308

Event class, 292

except statement, 24–25, 64–66, 70, 110

narrowness of, 74

Exception exception, 66–69, 314

exceptions, 24–25, 64–75

altering control flow, 67–69

asynchronous, 69

built-in, 67–68, 75, 314–318

catching, 64, 66, 70, 73–74

chained, 70–73, 315

defining new, 69–70, 74

expected vs. unexpected, 72–73

extracting values attached to, 141

handling, 24–25, 73–75, 110–111, 121–122,
277–278

hierarchy of, 67–68, 70

ignoring, 65–66

predefined, 315–318

propagating, 64

raising, 64, 69, 110, 147, 315

standard attributes of, 64–65

traceback messages of, 70, 73

user-defined, 69, 314

wrapping with a function, 54

exec() function, 133–134, 233, 301, 303

__exit__() method, 75, 99, 148

expandtabs() method, 298, 311

expressions, 3, 38–39

evaluating, 43, 303

extend() method, 300, 307

Extensible Markup Language (XML), 295

f-strings, 4, 9, 11, 251–252

False value, 6–7, 38, 43–45, 297–298

326 Index

fast lookups, 19
fcntl module, 262, 278
fcntl() function, 278
file descriptors, 257, 262
file keyword, 265, 308
file modes, 258, 263
file objects, 258, 262, 307

attributes of, 263

implementing, 279

manipulating, 261

methods supported by, 261

standard, 263

file pointers, 262

__file__ attribute, 36, 242

__file__ variable, 241

FileExistsError exception, 258, 316

FileIO class, 260

filename attribute, 316–317

fileno() method, 262

FileNotFoundError exception, 277, 316

files

converting between binary and text, 261

copying, 284, 319

encoding of, 13, 263

locking, 278

metadata of, 282

names of, 257–258, 263

newline characters in, 260, 263

opening, 12, 256–258

overwritting, 258

parsing, 105

paths to, 281–283

reading, 12–13, 262

removing, 284, 319

state of, 263

temporary, 289

writing to, 262, 268

filter() function, 128, 303

filtering, 127–128

finally statement, 25, 66, 141

find() method, 10, 299, 311

first-class objects, 85–87, 115, 242

flag variables, 63

flask library, 279

float() function, 11, 303, 315

__float__() method, 94–95, 303

FloatingPointError exception, 67, 314–315

floats, 3, 5, 37–38, 303, 315

converting to text, 250–251

precision of, 288

rounding, 5, 308

flock() function, 278

__floor__() method, 91

__floordiv__() method, 90

flush() method, 259, 262

flyweight pattern, 176

for statement, 12–13, 21–22, 45, 60–63, 140, 176

for reading lines in a file, 262

implementing, 97

nested, 144–145

on lists, 52

format() function, 11, 94, 250, 304

format() method, 9, 252–253, 311

__format__() method, 94, 304

format_map() method, 311

from statement, 31, 228–230, 237, 316

from_ prefix, in method names, 172

from_bytes() method, 305

fromhex() method, 274, 303

fromkeys() method, 302

frozenset() function, 304, 309

__fspath__() method, 257

function call operator, 56

functions, 22–24, 101–131, 137

accepting iterables, 47

arguments of

default, 23, 101–102, 115

default values for, 87, 157

evaluated left-to-right, 101

keyword, 103–104

number of, 101–102

order of, 101

positional, 105–106

asynchronous, 135–137, 272, 317

attribute access, 207

attributes of, 129–130

built-in, 297–314

callback, 114, 116, 118–123

comparing, 131

debugging messages in, 124

defining, 22, 101

delayed execution of, 145

 Index 327

documenting, 106, 129, 155
emulating, 98
evaluating, 116
helper, 106
higher-order, 115–118
inspecting, 131–133, 318
invoking, 22, 101, 111
local variables in, 24, 107, 111–113, 149–151
metadata of, 124–125, 130
naming, 106, 129
nested, 113, 116–117, 129
recursive, 114
return values of, 23, 109–110
side effects in, 108
signature of, 130–131
type hints in, 107, 129, 155
wrappers around, 124

functools module, 94
futures, 123

garbage collection, 26, 81–83, 89, 141, 203–204
gc module, 82
__ge__() method, 93
generator expressions, 54–56, 128
GeneratorExit exception, 147, 314–315
generators, 97, 139–152

asynchronous, 317
creating, 54
delegating, 142–144
emitting I/O streams, 265–266
enhanced, 146–151, 266–267
for repeated iterations, 142
inspecting, 318
terminating, 315

get() method, 19, 302
__get__() method, 211–213
get_data() function, 242
getattr() function, 157, 179, 193–194, 304
__getattr__() method, 98, 207–211
__getattribute__() method, 98, 207, 211
__getitem__() method, 95–96, 159–308
getsize() function, 282
__getstate__() method, 268
glob() function, 264
global statement, 112
globals() function, 131, 303–304

__globals__ attribute, 129, 131

globbing, 264

gmtime() function, 293

__gt__() method, 93

hasattr() function, 157, 179, 304

hash() function, 304

__hash__() method, 93–94

hashlib module, 278

help() command, 22

hex() function, 37, 95, 304

hex() method, 274, 299, 303

higher-order functions, 115–118

http package, 279

httpx library, 279, 294

HyperText Markup Language (HTML), 279

Hypertext Transfer Protocol (HTTP), 279,
293–294

__iadd__(), __iand__() methods, 91–92

id() function, 80, 304

identifiers, 38

identity checks, 92

__idivmod__() method, 91–92

if statement, 7–9, 39, 44–45, 52, 57, 59–60, 193

__ifloordiv__(), __ilshift__(),
__imatmul__(), __imod__() methods, 91–92

import statement, 15, 30–35, 59, 225–237, 241,
245, 316

inside a function, 228, 231

ImportError exception, 31, 67–68, 226, 237, 316

importlib library, 232

__imul__() method, 91–92

in operator, 19, 45, 50–52, 57, 96, 302

in-place assignment, see assignments, augmented

indent() function, 290

indentation, 4, 316

IndentationError exception, 316

index() method, 299, 307, 311, 313

__index__() method, 94–95

IndexError exception, 48, 49, 67, 314, 316

indexing operator, 13

on dictionaries, 18

on tuples, 16

info() function, 281

328 Index

inheritance, 28–30, 160–163
breaking code with, 162
from built-in types, 167–169
multiple, 163, 187–192, 211

cooperative, 190–192
propagating metaclasses via, 220
__slots__ variable and, 210
supervised, 197–199
via composition, 164–166
via functions, 166–167
via implementation, 163–164

INI files, 276
__init__() method, 27, 70, 89, 134, 154–155,

161, 181–201, 219–220
__init__.py file, 34–35, 235–237, 239–241
__init_subclass__() method, 197–199, 220–222
input() function, 13, 33, 304, 315
input/output (I/O), 247–296

buffering, 258–260
consuming input, 266–267
error handling, 249, 256, 259, 316
generating output, 265–266
handling, 288, 291
in binary mode, 257–259
in text mode, 258–260
nonblocking, 270
polling channels of, 271, 273, 284

insert() method, 13, 26, 300, 307
inspect module, 318
instances, 79, 154–156

adding attributes to, 161, 206
alternate constructors of, 170–172
caching, 200–201, 204–206
creating, 89, 199
deleting an attribute of, 156
destroying, 89, 201
getting, 156
initializing, 89
linking to classes, 206, 223
setting, 156
state associated with, 206, 223
storing data of, 210–211

int class, 80
int() function, 11, 95, 305
__int__() method, 94–95
integers, 3, 305

as literals, 37

base of, 37

binary, 6

converting

to text, 251

to/from bytes, 305

creating strings from

binary, 37, 297

hexadecimal, 37, 299, 303–304

octal, 37, 307

iterating over, 21

precision of, 316

ranges of, 21–22, 308

testing values of, 303

interfaces, 184–188

interpreter, 1, 3

InterruptedError exception, 316

intersection operation, 18, 50, 309

intersection() method, 309

__invert__() method, 91

io module, 260–261, 279–280

ioctl() function, 278

IOError exception, 316

__ior__(), __ipow__() methods, 91–92

ipython shell, 2

__irshift__() method, 91–92

“is a” relationship, 163

is not operator, 42, 57, 80

is operator, 42, 57, 80, 92

is_integer() method, 303

IsADirectoryError exception, 316

isalnum(), isalpha() methods, 299, 311

isascii() method, 311

isatty() method, 262

isdecimal() method, 311

isdigit() method, 299, 311

isdir() function, 282

isdisjoint() method, 309

isfile() function, 282

isidentifier() method, 311

isinstance() function, 64, 81, 183, 305

islower() method, 299, 311

isnumeric(), isprintable() methods, 311

isspace() method, 299, 311

issubclass() function, 184, 305

issubset(), issuperset() methods, 309

istitle() method, 299, 311

 Index 329

__isub__() method, 91–92

isupper() method, 299, 311

items() method, 21, 51, 302

iter() function, 305

__iter__() method, 97–98, 142, 152, 160, 305

iterations, 21–22, 45–47, 60–62, 97–98, 305

ending, 69

handling, 307, 318

nested, 143

producing values for, 139

repeated, 142

reversed, 308

iterator objects

asynchronous, 136–137

creating, 22, 61

implementing, 98, 152

internal stack of, 146

reversed, 97

itertools module, 318

__itruediv__() method, 91–92

__ixor__() method, 91–92

join() function, 281

join() method, 299, 311

JSON format, 280

json module, 280

KeyboardInterrupt exception, 67, 69, 314, 316

KeyError exception, 67, 314, 316

keys() method, 20, 51, 302

kqueue() function, 285

lambda expression, 114–115, 117–118

late binding, 115

lazy evaluation, 116, 214

__le__() method, 93

left-fold operations, 128

len() function, 10, 47, 50, 51, 159, 298, 302, 306,
309–310, 313

__len__() method, 28, 93, 95, 159–160, 308

libraries, 235

line endings, see newline characters

lineno attribute, 317

list class, 14, 80

list comprehension, 17, 52, 55

filtering with, 127

list() function, 20, 47, 55, 81, 168, 306

listdir() function, 264

lists, 13–15

adding items to, 13, 307

as literals, 38, 46

as sequences, 47

assignments on, 83

comparing, 42

concatenating, 14

converting to, from data, 14

creating, 13

deep vs. shallow copies of, 83, 306

defining subtypes of, 81

empty, 14, 43–44, 306

iterating over, 13, 21

modifying, 49–50

nested, 14, 145–146

number of items in, 306–307

passed as function parameters, 107

processing, 52–53, 307

removing items from, 307

slicing, 14

sorting, 307, 310

literals, 37–38

ljust() method, 299, 311

load() function, 268

loads() function, 280

locals() function, 131, 303, 307

localtime() function, 293

Lock class, 291

locks, 25

Logger instance, 280–281

logging module, 254, 280–281

logical operators, 6–7, 43, 57, 92

LookupError exception, 67–68, 314, 316

loops, 4, 7–9, 21–22, 60–63

aborting, 141

flag variables in, 63

numerical indices in, 61

skipping the reminder of, 8, 62

taking items from different sequences, 62

loose coupling, 167

lower() method, 10, 299, 311

__lshift__() method, 90

330 Index

lstrip() method, 299, 311
__lt__() method, 93–94

main() function, 33, 281
__main__ module, 234
__main__.py file, 235, 239, 245
maketrans() method, 299, 311
map() function, 128, 307
mappings, 18–19, 128, 307

opeations on, 51–52
math module, 318
mathematical operations, 5, 40, 90–92
__matmul__() method, 90
max() function, 47, 94, 128, 307
MD5 algorithm, 278
memory

allocating, 82
reducing usage of, 55, 210–211

MemoryError exception, 68, 316
metaclass keyword, 218–219
metaclasses, 217–222
Method Resolution Order (MRO, 190–192, 222
methods, 79, 154

abstract, 185, 222
available on an object, 26
bound, 158, 183
decorating automatically, 222
defining, 215
fully qualified, 158
implementing, 213
internal, 176
internal variables in, 27
invoking, 154
magic (special), 154, 210
naming, 172, 176
public, 176
redefining, 28, 160
rewriting, 195
static, 173–176, 310
user-defined, 180

Microsoft Excel, 276
min() function, 47, 94, 128, 307
mixin classes, 188–192, 220
__mod__() method, 90
mode attribute, 263
module objects, 226

__module__ attribute, 129, 222
__module__ variable, 215
ModuleNotFoundError exception, 316
modules, 30–32, 225–235

as first-class objects, 242–243
caching, 227–228, 231–233
compiling, 233
debugging, 235
importing, 31, 225–227, 232–234

circular, 230–232
specific definitions from, 228–230

listing contents of, 31
locating, 226
names of, 222, 226, 234, 242
namespaces of, 242, 304
organizing, 33
reloading and unloading, 232–233
renaming, 227
standard library, 31, 273–296, 318–319
third-party, 32

modulo, 5, 307
monads, 123
__mro__ attribute, 190, 207, 222
__mul__() method, 88, 90
multiplication, 5

name attribute, 263
name mangling, 177–179
__name__ attribute, 106, 129, 222, 242
__name__ variable, 33, 234
named fields, 19
namedtuple() function, 134
NameError exception, 68, 111, 316–317
namespace packages, 237
namespaces, 31, 158, 226, 242

global, 112
local, 111
of classes, 215, 218
of packages, 239–240

nc program, 274, 286
__ne__() method, 93
__neg__() method, 91
network programs, 286, 288, 291
__new__() method, 89, 199–201, 219
new_class() function, 216–217
newline attribute, 260

 Index 331

newline characters, 260, 263, 301, 304

controlling, in output, 265

in input, 266

newlines attribute, 263

next() function, 139–141, 307

next() method, 317

__next__() method, 97, 140, 152

None value, 6, 43–44, 87, 102, 108–110

normalize() function, 295

not in operator, 45, 57

not operator, 6–7, 43, 57, 92

NotADirectoryError exception, 316

NotImplemented object, 91, 93

NotImplementedError exception, 68, 93, 316

numbers

comparing, 42

complex, 301, 303, 305

converting

from objects, 94–95

from strings, 11

to text, 250–251

floating-point, 5, 37–38, 250–251, 288, 303,
308, 315

nonempty, 43

precision of, 251

random, 319

sum of, 312

numpy package, 50, 88, 96, 263

object class, 190, 307

inheriting from, 160, 191

objects, 26–30, 79–99, 153

attributes of, 56

built-in, 222–223

checking against classes, 183

comparing, 42, 80, 92–94

converting to built-in types, 94–95

coroutine, 135

deep vs. shallow copies of, 83

first-class, 85–87, 115

hash values of, 93–94, 304

identity of, 80, 304

immutable, 102

implementing operators for, 79

initializing, 27

invoked likes functions, 98

iterable, 45

listing available methods of, 26

location of, 38–39

management of, 89–90

methods available on, 26

mutable, 41, 83–84, 107–108

reference count of, 81–83

references to, 83–84

representations of, 84–85, 297, 308

serialization of, 268–269

sorting, 94

state of, 154

types of, 79, 154

unpacking values of, 45–46, 60

values of, 79, 84–85

oct() function, 37, 95, 307

offset attribute, 317

open() function, 12, 15, 241, 256–261, 279, 307

operating-system functions, 281, 316, 319

operators, 39–40

arithmetic, 5, 40

augmented, 7, 41, 47, 92, 111

bitwise, 6, 40, 57

comparison, 6, 42–43, 93

implementing, 79

logical, 6–7, 43, 57, 92

precedence rules for, 56–58

or operator, 6–7, 43, 57, 92

__or__() method, 90

ord() function, 307

os module, 258, 281, 319

os._exit() method, 317

os.chdir(), os.getcwd() methods, 257

os.environ variable, 256

os.path module, 281–282

os.system() function, 284

OSError exception, 64–65, 67–68, 277, 314,
316–318

output, see input/output (I/O)

OverflowError exception, 67, 314, 316

__package__ attribute, 242

packages, 33–34, 235–242

data files of, 241–242

deploying, 243–244

exporting, 240–241

332 Index

importing files within, 34

imports within, 237

installing, 36, 244

locating, 36

namespaces of, 239–240

naming, 243

submodules of, running as scripts, 238–239

third-party, 50

pandas library, 277

parameters, see functions, arguments of

parent classes, see base classes

partial() function, 98

partition() method, 299, 311

pass statement, 7, 60, 65

Path class, 282

path separators, 281

__path__ attribute, 242

pathlib module, 257, 264, 281–283

patterns, 176

performance, 55

exception handling and, 111

local variables and, 149–151

optimizing, 210, 220–221

type checks and, 81

PermissionError exception, 277, 316

pickle module, 268–269

pip command, 35–36, 244

poll() function, 285

pop() method, 27, 104, 300, 302, 307, 309

Popen class, 289

popitem() method, 302

__pos__() method, 91

POSIX standard, 281

pow() function, 5, 40, 307

__pow__() method, 90

power, in math, 5, 307

__prepare__() method, 219

primitive types, 3

print() function, 4, 11–13, 84, 265, 308

ProcessLookupError exception, 316

programs, see also code

creating, 2–3

executing, 1, 3, 234–235

loading, 228, 233

side effects in, 108

specifying interpreter in, 3

starting from packages, 244

structuring, 34–35, 59, 235

terminating, 26, 69

properties, 180–183

functions associated with, 207, 211

implementing, 211

@property decorator, 180–182, 308

protocols, 87–99

proxies, 104, 208

push() method, 27

.py suffix, 2, 3, 30, 226, 233

__pycache__ directory, 233

pytest library, 319

Python

applying design patterns to, 176

flexibility of, 86

indentation in, 4, 316

interactive mode of, 1–2

no internal variables in, 27

optimized mode of, 77

package index of, 243

runtime environment of, 254, 319

python shell, 1

PYTHONPATH environment variable, 234

__qualname__ attribute, 129, 222

__qualname__ variable, 215

Queue class, 292

quit(), in REPL, 2

__radd__() method, 90–91

raise statement, 25, 64, 69

__rand__() method, 91

random module, 319

range() function, 21–22, 308

raw_input() function, 315

__rdivmod__() method, 90

re module, 283–284, 319

read() function, 258

read() method, 12, 262, 315

read-evaluation-print loop (REPL), 1

readable() method, 262

readinto() method, 262–263

readline() method, 262, 315

readlines() method, 262

 Index 333

recursion, 114

limit of, 114, 143, 317

RecursionError exception, 317

reduce() function, 128

reference counting, 81–83, 201

reference cycle, 203

ReferenceError exception, 317

registries, 194, 197, 222

regular expressions, 283–284, 319

reload() function, 232

remote servers, 208

remove() method, 18, 50, 300, 307, 309

removeprefix() method, 299, 312

removesuffix() method, 299, 312

replace() method, 10, 299, 312

repr() function, 11, 85, 89, 252, 308

__repr__() method, 28, 89–90, 154–155,
159–199

default implementation of, 160

requests library, 279, 294

resources, controlling, 99

return statement, 59, 109, 135, 140

reverse() method, 300, 307

reversed() function, 97, 308

__reversed__() method, 97, 308

rfind() method, 299, 312

__rfloordiv__() method, 90

rglob() function, 264

rindex(), rjust() methods, 299, 312

__rlshift__() method, 91

__rmatmul__(), __rmod__(), __rmul__()
methods, 90

__ror__(), __round__() methods, 91

round() function, 5, 40, 308

rpartition(), rsplit() methods, 299, 312

__rpow__() method, 90

__rrshift__() method, 91

__rshift__() method, 90

rstrip() method, 300, 312

__rsub__(), __rtruediv__() methods, 90

run() function, 135, 270–271

RuntimeError exception, 68, 114, 316–317

__rxor__() method, 91

sandbox, 36

scripts, 32–33

seek(), seekable() methods, 262

select module, 271, 284–285

select() function, 285

selectors module, 271, 285

self object, 27, 154, 158, 169, 220

send() method, 152

sep keyword, 265, 308

sequences

comparing, 43

mutable, 49–50

operations on, 47–50

set comprehension, 17, 53

set() function, 17–18, 20, 47, 309

__set__() method, 211

__set_name__() method, 212

setattr() function, 157, 179, 310

__setattr__() method, 98, 207, 211

setdefault() method, 302

__setitem__() method, 95–96, 167

sets, 17–18

adding/removing items to/from, 50, 309

as literals, 38, 46

creating, 17, 309

empty, 18

immutable, 304

number of items in, 50, 306, 309

order of elements in, 17

processing, 50–51, 53–54, 309

__setstate__() method, 268

setup() function, 244

setup.py file, 244

setuptools module, 234, 243–244

SHA-1 algorithm, 278

shallow copies, 83

shell, 1, 284, 319

short-circuit evaluation, 43

shutil module, 284, 319

side effects, 108

SIGINT signal, 69

signal module, 69

signature() function, 130–131

__signature__ attribute, 131

Simple Mail Transfer Protocol (SMTP), 285

sin() function, 318

singletons, 176, 200

site-packages directory, 35, 244

334 Index

sleep() function, 293
slice instance, 96
slice() function, 310
slicing operator, 10, 47–49, 298, 307, 310, 313

implementing, 96

on lists, 14

on tuples, 16

__slots__ variable, 210–211, 220–221, 223

smtplib module, 285–286

socket module, 286–287

sort() method, 108, 307

sorted() function, 47, 114, 310

splatting, 46

split() function, 281

split() method, 10, 300, 312

splitlines() method, 300, 312

sprintf() function (C), 253

sqrt() function, 38, 318

stack frames, 132–133

stack traceback objects, 65, 73

standard error, 263

standard input/output, 263, 304

start keyword, 62

startswith() method, 10, 300, 312

state machines, 176

statements, 59

executing, 303

@staticmethod decorator, 125, 173, 183, 213, 310

statistics module, 47, 319

stdin, stdout attributes, 289

StopAsyncIteration exception, 317

StopIteration exception, 67, 69, 97, 140–141,
147, 307, 317

str() function, 11, 84, 94, 168, 248, 251–252,
310

__str__() method, 94, 171, 310

default implementation of, 160

strategy pattern, 176

strerror attribute, 316

stride argument, 48, 49, 96

StringIO class, 279

strings, 3, 9–12

as literals, 38

as sequences, 47

checking characters of, 311

comparing, 43

concatenating, 10–11, 310

converting
from non-string values, 11, 304
from objects, 94
to numbers, 11

converting to upper/lowercase, 310–312
creating, 11, 310
encoding/decoding, 310
formatting, 9, 11, 250–253, 310–311
iterating over, 21
methods for, 10
nonempty, 43
number of items in, 10, 306, 310
processing, 310–312
representations of, 89–90
substrings of, 10, 310–312
triple-quoted, 9, 38
whitespace in, 312

strip() method, 10, 300, 312
struct module, 288
struct_time object, 293
__sub__() method, 90
subclasses, 81, 160

checking classes against, 184, 305
implementing interfaces, 185

subprocess module, 256, 288–289
subtraction, 5
subtypes, see subclasses
sum() function, 15, 47, 128, 312
super() function, 161, 189–192, 199, 207, 313
superclasses, see base classes
swapcase() method, 300, 312
symmetric difference operation, 18, 50, 309
symmetric_difference() method, 309
symmetric_difference_update() method, 309
SyntaxError exception, 316, 317
sys module, 15, 319
sys.argv list, 33, 254–255
sys.exit() function, 317
sys.getdefaultencoding() method, 259
sys.getfilesystemencoding() function, 257,

264
sys._getframe() function, 132
sys.getrecursionlimit() function, 114
sys.getrefcount() function, 82
sys.modules variable, 227, 232
sys.path variable, 31, 35, 226, 234, 244
sys.setrecursionlimit() function, 114

 Index 335

sys.stderr object, 69, 263–264

sys.stdin, sys.stdout objects, 263–264

SystemError exception, 317

SystemExit exception, 15, 26, 67, 69, 314,
317

TabError exception, 317

tabulation, 19, 311, 318

teletypewriter (TTY), 281

tell() method, 262

telnet program, 274, 286

tempfile module, 289–290

testing

smaller tasks, 145

using file objects for, 279

text, 247–248

converting from binary data, 274

encoding/decoding, 13, 248–250, 255,
259

fitting to terminal width, 290

handling lines of, 260, 263

text attribute, 317

TextIOWrapper class, 260

textwrap module, 290

threading module, 271, 291–293

threads, 271–272

throw() method, 147, 152

time module, 293, 319

time() function, 293

time, handling, 293, 318–319

TimeoutError exception, 316

title() method, 300, 312

to_bytes() method, 305

@trace decorator, 125–126

traceback messages, 24, 315

traceback module, 73

__traceback__ attribute, 65, 73, 315

translate() method, 299–300, 312

True value, 6–7, 38, 43–45, 297–298

__truediv__() method, 90

__trunc__() method, 91

truncate() method, 262

truncating division, 5

try statement, 24–25, 64, 66, 110, 141

tuple type, 313

tuple() function, 47

tuples, 15–17

as keys, 52

as literals, 38, 46

as sequences, 47

comparing, 42

concatenating, 16

creating, 15

empty, 43, 313

indexing, 16

iterating over, 17, 21

named, 109–110

number of items in, 306, 313

returning values from functions with, 23, 109

slicing, 16

unpacking, 16

using in dictionaries, 19

turtle module, 319

type class, 218–220, 313

type hints, 107, 129, 155, 179–180, 222

creating methods from, 197

module-level, 242

with base classes, 184–185

type() function, 70, 80, 154, 217, 313

type-based dispatch, 193–194

TypeError exception, 43, 68, 95, 101, 103, 122,
191, 211, 305, 317

types, 79, 313

built-in, 167–169

checking values against, 81, 305

conversions between, 94–95

types module, 313

UDP servers, 287

unary minus/plus, 5

UnboundLocalError exception, 68, 111, 317

Unicode encoding

code-point values in, 307

in source code, 2

operations on text strings in, 294–295

unicodedata module, 294–295

UnicodeError exception, 67–68, 249, 317

UnicodeXXXError exceptions, 317

union operation, 18, 50, 309

union() method, 309

unittest module, 319

universal newline mode, 260

336 Index

UNIX

EOF character on, 2

executing files on, 3

low-level I/O control operations on, 278

newline characters on, 260

path separators on, 281

unpack() function, 288

update() method, 18, 168, 302

upper() method, 10, 300, 312

urlencode(), urlopen(), urlparse() functions,
293–294

urllib package, 293–294

urllib.parse package, 294

UserDict, UserList, UserString classes, 168

UTF-8 encoding, 2, 13, 249–250

ValueError exception, 25, 67–68, 317

values, 3, 79

checking against types, 81, 305

minimum/maximum, 307

printing, 265, 308

reducing, 128

representing, 84–85

updating in place, 41

values() method, 21, 51, 302

variables, 3

associated types of, 3, 167

free, 114–115

global, 111–113

local, 24, 111–113, 134, 149–151

names of, 3

reassigning, 108

starred, 46

type hints for, 107

unbound, 317

vars() function, 313

venv command, 36

virtual environment, 36

walrus operator, see := operator
warning() function, 281
weak references, 204–206, 317
weakref module, 204, 317
__weakref__ attribute, 206
web servers, 279
websites, 275, 294
while statement, 4, 7–9, 12, 39, 60–62
Windows

EOF character on, 2
executing files on, 3
failed system calls on, 318
newline characters on, 260
path separators on, 281

WindowsError exception, 318
with statement, 12, 25, 75–77, 99, 202, 256,

289–290
wrap() function, 290
wrappers, 104, 208
@wraps decorator, 124–125
writable() method, 262
write() function, 265
write() method, 13, 262
write_through attribute, 263
writelines() method, 262

xml package, 295–296
xml.etree package, 295
__xor__() method, 90

yield from statement, 142–143
yield statement, 97, 139–142, 265

used as an expression, 146–147

ZeroDivisionError exception, 67, 314, 318
zfill() method, 300, 312
zip() function, 62, 314

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	5 Functions
	5.1 Function Definitions
	5.2 Default Arguments
	5.3 Variadic Arguments
	5.4 Keyword Arguments
	5.5 Variadic Keyword Arguments
	5.6 Functions Accepting All Inputs
	5.7 Positional-Only Arguments
	5.8 Names, Documentation Strings, and Type Hints
	5.9 Function Application and Parameter Passing
	5.10 Return Values
	5.11 Error Handling
	5.12 Scoping Rules
	5.13 Recursion
	5.14 The lambda Expression
	5.15 Higher-Order Functions
	5.16 Argument Passing in Callback Functions
	5.17 Returning Results from Callbacks
	5.18 Decorators
	5.19 Map, Filter, and Reduce
	5.20 Function Introspection, Attributes, and Signatures
	5.21 Environment Inspection
	5.22 Dynamic Code Execution and Creation
	5.23 Asynchronous Functions and await
	5.24 Final Words: Thoughts on Functions and Composition

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

