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Introduction

And it ought to be remembered that there is nothing more
difficult to take in hand, more perilous to conduct, or
more uncertain in its success, than to take the lead in the
introduction of a new order of things.

— N. Machiavelli, 1513

Elements of Programming Interviews (EPI) aims to help engineers interviewing
for software development positions. The primary focus of EPI is data structures,
algorithms, system design, and problem solving. The material is largely presented
through questions.

An interview problem

Let’s begin with Figure 1 below. It depicts movements in the share price of a company
over 40 days. Specifically, for each day, the chart shows the daily high and low, and
the price at the opening bell (denoted by the white square). Suppose you were asked
in an interview to design an algorithm that determines the maximum profit that
could have been made by buying and then selling a single share over a given day
range, subject to the constraint that the buy and the sell have to take place at the start
of the day. (This algorithm may be needed to backtest a trading strategy.)

You may want to stop reading now, and attempt this problem on your own.
First clarify the problem. For example, you should ask for the input format.

Let’s say the input consists of three arrays L,H, and S, of nonnegative floating point
numbers, representing the low, high, and starting prices for each day. The constraint
that the purchase and sale have to take place at the start of the day means that it
suffices to consider S. You may be tempted to simply return the difference of the

Day 0 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 Day 35 Day 40

Figure 1: Share price as a function of time.
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2 Introduction

minimum and maximum elements in S. If you try a few test cases, you will see that
the minimum can occur after the maximum, which violates the requirement in the
problem statement—you have to buy before you can sell.

At this point, a brute-force algorithm would be appropriate. For each pair of
indices i and j > i compute pi, j = S[ j]− S[i] and compare this difference to the largest
difference, d, seen so far. If pi, j is greater than d, set d to pi, j. You should be able to
code this algorithm using a pair of nested for-loops and test it in a matter of a few
minutes. You should also derive its time complexity as a function of the length n of
the input array. The inner loop is invoked n−1 times, and the i-th iteration processes
n− 1− i elements. Processing an element entails computing a difference, performing
a compare, and possibly updating a variable, all of which take constant time. Hence,
the run time is proportional to

∑n−2
k=0 (n−1−k) = (n−1)(n)

2 , i.e., the time complexity of the
brute-force algorithm is O(n2). You should also consider the space complexity, i.e.,
how much memory your algorithm uses. The array itself takes memory proportional
to n, and the additional memory used by the brute-force algorithm is a constant
independent of n—a couple of iterators and one temporary floating point variable.

Once you have a working algorithm, try to improve upon it. Specifically, an
O(n2) algorithm is usually not acceptable when faced with large arrays. You may
have heard of an algorithm design pattern called divide-and-conquer. It yields the
following algorithm for this problem. Split S into two subarrays, S[0 : b n

2 c] and
S[b n

2 c + 1 : n − 1]; compute the best result for the first and second subarrays; and
combine these results. In the combine step we take the better of the results for the
two subarrays. However, we also need to consider the case where the optimum buy
and sell take place in separate subarrays. When this is the case, the buy must be in
the first subarray, and the sell in the second subarray, since the buy must happen
before the sell. If the optimum buy and sell are in different subarrays, the optimum
buy price is the minimum price in the first subarray, and the optimum sell price is in
the maximum price in the second subarray. We can compute these prices inO(n) time
with a single pass over each subarray. Therefore, the time complexity T(n) for the
divide-and-conquer algorithm satisfies the recurrence relation T(n) = 2T( n

2 ) + O(n),
which solves to O(n log n).

The divide-and-conquer algorithm is elegant and fast. Its implementation entails
some corner cases, e.g., an empty subarray, subarrays of length one, and an array in
which the price decreases monotonically, but it can still be written and tested by a
good developer in 20–30 minutes.

Looking carefully at the combine step of the divide-and-conquer algorithm, you
may have a flash of insight. Specifically, you may notice that the maximum profit
that can be made by selling on a specific day is determined by the minimum of
the stock prices over the previous days. Since the maximum profit corresponds to
selling on some day, the following algorithm correctly computes the maximum profit.
Iterate through S, keeping track of the minimum element m seen thus far. If the
difference of the current element and m is greater than the maximum profit recorded
so far, update the maximum profit. This algorithm performs a constant amount of
work per array element, leading to an O(n) time complexity. It uses two float-valued

ElementsOfProgrammingInterviews.com



Introduction 3

variables (the minimum element and the maximum profit recorded so far) and an
iterator, i.e., O(1) additional space. It is considerably simpler to implement than the
divide-and-conquer algorithm—a few minutes should suffice to write and test it.
Working code is presented in Solution 6.2 on Page 110.

If in a 45–60 minutes interview, you can develop the algorithm described above,
implement and test it, and analyze its complexity, you would have had a very suc-
cessful interview. In particular, you would have demonstrated to your interviewer
that you possess several key skills:

− The ability to rigorously formulate real-world problems.
− The skills to solve problems and design algorithms.
− The tools to go from an algorithm to a tested program.
− The analytical techniques required to determine the computational complexity

of your solution.

Book organization

Interviewing successfully is about more than being able to intelligently select data
structures and design algorithms quickly. For example, you also need to know how
to identify suitable companies, pitch yourself, ask for help when you are stuck on an
interview problem, and convey your enthusiasm. These aspects of interviewing are
the subject of Chapters 1–3, and are summarized in Table 1.1 on Page 8.

Chapter 1 is specifically concerned with preparation; Chapter 2 discusses how you
should conduct yourself at the interview itself; and Chapter 3 describes interviewing
from the interviewer’s perspective. The latter is important for candidates too, because
of the insights it offers into the decision making process. Chapter 4 reviews problem
solving patterns.

The problem chapters are organized as follows. Chapters 5–15 are concerned with
basic data structures, such as arrays and binary search trees, and basic algorithms,
such as binary search and quicksort. In our experience, this is the material that
most interview questions are based on. Chapters 16–19 cover advanced algorithm
design principles, such as dynamic programming and heuristics, as well as graphs.
Chapters 20–21 focus on distributed and parallel programming, and design problems.
Each chapter begins with a summary of key concepts, followed by problems. Broadly
speaking, problems are ordered by subtopic, with more commonly asked problems
appearing first.

The notation, specifically the symbols we use for describing algorithms, e.g.,∑n−1
i=0 i2, [a, b), 〈2, 3, 5, 7〉,A[i : j],⇒, |S|, {x | x2 > 2}, etc., is summarized starting on

Page 179. It should be familiar to anyone with a technical undergraduate degree, but
we still request you to review it carefully before getting into the book, and whenever
you have doubts about the meaning of a symbol. Terms, e.g., BFS and dequeue, are
indexed starting on Page 181.

Problems, solutions, variants, ninjas, and hints

Most solutions in EPI are based on basic concepts, such as arrays, hash tables, and
binary search, used in clever ways. Some solutions use relatively advanced machin-
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4 Introduction

ery, e.g., Dijkstra’s shortest path algorithm. You will encounter such problems in an
interview only if you have a graduate degree or claim specialized knowledge.

Most solutions include code snippets. These are primarily written in C++, and use
C++11 features. Programs concerned with concurrency are in Java. C++11 features
germane to EPI are reviewed on Page 103. A guide to reading C++ programs for
Java developers is given on Page 103. Source code, which includes randomized and
directed test cases, can be found at the book website. Java equivalents for all C++

programs are available at the same site. System design problems are conceptual and
not meant to be coded; a few algorithm design problems are also in this spirit.

At the end of many solutions we outline problems that are related to the original
question. We classify such problems as variants and ε-variants. A variant is a problem
whose formulation or solution is similar to the solved problem. An ε-variant is a
problem whose solution differs slightly, if at all, from the given solution.

Approximately a fifth of the questions in EPI have a white ninja ( ) or black ninja
( ) designation. White ninja problems are more challenging, and are meant for
applicants from whom the bar is higher, e.g., graduate students and tech leads. Black
ninja problems are exceptionally difficult, and are suitable for testing a candidate’s
response to stress, as described on Page 16. Questions without a ninja label should
be solvable within an hour-long interview and, in some cases, take substantially less
time.

Often, your interviewer will give you a brief suggestion on how to proceed with
a problem if you get stuck. We provide hints in this style on Page 99.

Level and prerequisites

We expect readers to be familiar with data structures and algorithms taught at
the undergraduate level. The chapters on concurrency and system design require
knowledge of locks, distributed systems, operating systems (OS), and insight into
commonly used applications. Some of the material in the later chapters, specifi-
cally dynamic programming, graphs, and greedy algorithms, is more advanced and
geared towards candidates with graduate degrees or specialized knowledge.

The review at the start of each chapter is not meant to be comprehensive and if
you are not familiar with the material, you should first study it in an algorithms
textbook. There are dozens of such texts and our preference is to master one or two
good books rather than superficially sample many. Algorithms by Dasgupta, et al. is
succinct and beautifully written; Introduction to Algorithms by Cormen, et al. is an
amazing reference.

Since our focus is on problems that can be solved in an interview, we do not
include many elegant algorithm design problems. Similarly, we do not have any
straightforward review problems; you may want to brush up on these using text-
books.

EPI Sampler

This document is a sampling of EPI. Its purpose is to provide examples of EPI’s
organization, content, style, topics, and quality. You can get a better sense of the
problems not included in this document by visiting the EPI website.

ElementsOfProgrammingInterviews.com
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We have had to make small changes to account for the sampling process. For
example, the patterns chapter in this document does not refer to problems that
illustrate the pattern being discussed. Similarly, we do not include the study guide
from EPI, which specifies the problems to focus on based on the amount of time you
have to prepare.

This document is automatically built from the source code for EPI. There may be
abrupt changes in topic and peculiarities with respect to spacing because of the build
process.

Reader engagement

Many of the best ideas in EPI came from readers like you. The study guide, ninja
notation, and hints, are a few examples of many improvements that were brought
about by our readers.

The companion website, ElementsOfProgrammingInterviews.com, includes a Stack
Overflow-style discussion forum, and links to our social media presence. It also has
links blog postings, code, and bug reports.

Please fill out the EPI registration form, bit.ly/epireg, to get updates on interviewing
trends, good practice problems, links to our blog posts, and advance information on
the EPI roadmap. (You can always communicate with us directly—our contact
information is on the website.)

ElementsOfProgrammingInterviews.com
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Chapter

1
Getting Ready

Before everything else, getting ready is the secret of success.

— H. Ford

The most important part of interview preparation is knowing the material and prac-
ticing problem solving. However, the nontechnical aspects of interviewing are also
very important, and often overlooked. Chapters 1–3 are concerned with the non-
technical aspects of interviewing, ranging from résumé preparation to how hiring
decisions are made. These aspects of interviewing are summarized in Table 1.1 on
the following page

The interview lifecycle

Generally speaking, interviewing takes place in the following steps:
(1.) Identify companies that you are interested in, and, ideally, find people you

know at these companies.
(2.) Prepare your résumé using the guidelines on the next page, and submit it via

a personal contact (preferred), or through an online submission process or a
campus career fair.

(3.) Perform an initial phone screening, which often consists of a question-answer
session over the phone or video chat with an engineer. You may be asked to
submit code via a shared document or an online coding site such as ideone.com
or collabedit.com. Don’t take the screening casually—it can be extremely chal-
lenging.

(4.) Go for an on-site interview—this consists of a series of one-on-one interviews
with engineers and managers, and a conversation with your Human Resources
(HR) contact.

(5.) Receive offers—these are usually a starting point for negotiations.
Note that there may be variations—e.g., a company may contact you, or you

may submit via your college’s career placement center. The screening may involve
a homework assignment to be done before or after the conversation. The on-site
interview may be conducted over a video chat session. Most on-sites are half a day,
but others may last the entire day. For anything involving interaction over a network,
be absolutely sure to work out logistics (a quiet place to talk with a landline rather
than a mobile, familiarity with the coding website and chat software, etc.) well in
advance.

7



8 Chapter 1. Getting Ready

Table 1.1: A summary of nontechnical aspects of interviewing

The Interview Lifecycle, on the previous
page
− Identify companies, contacts
− Résumé preparation
� Basic principles
� Website with links to projects
� LinkedIn profile & recommendations

− Résumé submission
− Mock interview practice
− Phone/campus screening
− On-site interview
− Negotiating an offer

At the Interview, on Page 11
− Don’t solve the wrong problem
− Get specs & requirements
− Construct sample input/output
− Work on concrete examples first
− Spell out the brute-force solution
− Think out loud
− Apply patterns
− Test for corner-cases
− Use proper syntax
− Manage the whiteboard
− Be aware of memory management
− Get function signatures right

General Advice, on Page 15
− Know the company & interviewers
− Communicate clearly
− Be passionate
− Be honest
− Stay positive
− Don’t apologize
− Be well-groomed
− Mind your body language
− Leave perks and money out
− Be ready for a stress interview
− Learn from bad outcomes
− Negotiate the best offer

Conducting an Interview, on Page 18
− Don’t be indecisive
− Create a brand ambassador
− Coordinate with other interviewers
� know what to test on
� look for patterns of mistakes

− Characteristics of a good problem:
� no single point of failure
� has multiple solutions
� covers multiple areas
� is calibrated on colleagues
� does not require unnecessary domain

knowledge
− Control the conversation
� draw out quiet candidates
� manage verbose/overconfident candi-

dates
− Use a process for recording & scoring
− Determine what training is needed
− Apply the litmus test

We recommend that you interview at as many places as you can without it taking
away from your job or classes. The experience will help you feel more comfortable
with interviewing and you may discover you really like a company that you did not
know much about.

The résumé

It always astonishes us to see candidates who’ve worked hard for at least four years
in school, and often many more in the workplace, spend 30 minutes jotting down
random factoids about themselves and calling the result a résumé.

A résumé needs to address HR staff, the individuals interviewing you, and the
hiring manager. The HR staff, who typically first review your résumé, look for
keywords, so you need to be sure you have those covered. The people interviewing
you and the hiring manager need to know what you’ve done that makes you special,
so you need to differentiate yourself.

ElementsOfProgrammingInterviews.com



Chapter 1. Getting Ready 9

Here are some key points to keep in mind when writing a résumé:
(1.) Have a clear statement of your objective; in particular, make sure that you tailor

your résumé for a given employer.
E.g., “My outstanding ability is developing solutions to computationally chal-
lenging problems; communicating them in written and oral form; and working
with teams to implement them. I would like to apply these abilities at XYZ.”

(2.) The most important points—the ones that differentiate you from everyone
else—should come first. People reading your résumé proceed in sequential
order, so you want to impress them with what makes you special early on.
(Maintaining a logical flow, though desirable, is secondary compared to this
principle.)
As a consequence, you should not list your programming languages, course-
work, etc. early on, since these are likely common to everyone. You should
list significant class projects (this also helps with keywords for HR.), as well
as talks/papers you’ve presented, and even standardized test scores, if truly
exceptional.

(3.) The résumé should be of a high-quality: no spelling mistakes; consistent spac-
ings, capitalizations, numberings; and correct grammar and punctuation. Use
few fonts. Portable Document Format (PDF is preferred, since it renders well
across platforms.

(4.) Include contact information, a LinkedIn profile, and, ideally, a URL to a per-
sonal homepage with examples of your work. These samples may be class
projects, a thesis, and links to companies and products you’ve worked on.
Include design documents as well as a link to your version control repository.

(5.) If you can work at the company without requiring any special processing (e.g.,
if you have a Green Card, and are applying for a job in the US), make a note of
that.

(6.) Have friends review your résumé; they are certain to find problems with it that
you missed. It is better to get something written up quickly, and then refine it
based on feedback.

(7.) A résumé does not have to be one page long—two pages are perfectly appro-
priate. (Over two pages is probably not a good idea.)

(8.) As a rule, we prefer not to see a list of hobbies/extracurricular activities (e.g.,
“reading books”, “watching TV”, “organizing tea party activities”) unless they
are really different (e.g., “Olympic rower”) and not controversial.

Whenever possible, have a friend or professional acquaintance at the company route
your résumé to the appropriate manager/HR contact—the odds of it reaching the
right hands are much higher. At one company whose practices we are familiar with,
a résumé submitted through a contact is 50 times more likely to result in a hire than
one submitted online. Don’t worry about wasting your contact’s time—employees
often receive a referral bonus, and being responsible for bringing in stars is also
viewed positively.

ElementsOfProgrammingInterviews.com



10 Chapter 1. Getting Ready

Mock interviews

Mock interviews are a great way of preparing for an interview. Get a friend to ask
you questions (from EPI or any other source) and solve them on a whiteboard, with
pen and paper, or on a shared document. Have your friend take notes and give you
feedback, both positive and negative. Make a video recording of the interview. You
will cringe as you watch it, but it is better to learn of your mannerisms beforehand.
Ask your friend to give hints when you get stuck. In addition to sharpening your
problem solving and presentation skills, the experience will help reduce anxiety at
the actual interview setting. If you cannot find a friend, you can still go through the
same process, recording yourself.

ElementsOfProgrammingInterviews.com



Chapter

2
Strategies For A Great Interview

The essence of strategy is choosing what not to do.

— M. E. Porter

A typical one hour interview with a single interviewer consists of five minutes of
introductions and questions about the candidate’s résumé. This is followed by five
to fifteen minutes of questioning on basic programming concepts. The core of the
interview is one or two detailed design questions where the candidate is expected
to present a detailed solution on a whiteboard, paper, or integrated development
environments (IDEs). Depending on the interviewer and the question, the solution
may be required to include syntactically correct code and tests.

Approaching the problem

No matter how clever and well prepared you are, the solution to an interview problem
may not occur to you immediately. Here are some things to keep in mind when this
happens.

Clarify the question: This may seem obvious but it is amazing how many inter-
views go badly because the candidate spends most of his time trying to solve the
wrong problem. If a question seems exceptionally hard, you may have misunder-
stood it.

A good way of clarifying the question is to state a concrete instance of the problem.
For example, if the question is “find the first occurrence of a number greater than k
in a sorted array”, you could ask “if the input array is 〈2, 20, 30〉 and k is 3, then are
you supposed to return 1, the index of 20?” These questions can be formalized as
unit tests.

Feel free to ask the interviewer what time and space complexity he would like in
your solution. If you are told to implement an O(n) algorithm or use O(1) space, it
can simplify your life considerably. It is possible that he will refuse to specify these,
or be vague about complexity requirements, but there is no harm in asking.

Work on concrete examples: Consider Problem 5.5 on Page 44, which entails
determining which of the 500 doors are open. This problem may seem difficult at
first. However, if you start working out which doors are going to be open up to the
fifth door, you will see that only Door 1 and Door 4 are open. This may suggest to
you that the door is open only if its index is a perfect square. Once you have this
epiphany, the proof of its correctness is straightforward. (Keep in mind this approach
will not work for all problems you encounter.)

11
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Spell out the brute-force solution: Problems that are put to you in an interview
tend to have an obvious brute-force solution that has a high time complexity com-
pared to more sophisticated solutions. For example, instead of trying to work out
a DP solution for a problem (e.g., for Problem 17.4 on Page 82), try all the possi-
ble configurations. Advantages to this approach include: (1.) it helps you explore
opportunities for optimization and hence reach a better solution, (2.) it gives you
an opportunity to demonstrate some problem solving and coding skills, and (3.) it
establishes that both you and the interviewer are thinking about the same problem.
Be warned that this strategy can sometimes be detrimental if it takes a long time to
describe the brute-force approach.

Think out loud: One of the worst things you can do in an interview is to freeze
up when solving the problem. It is always a good idea to think out loud. On the
one hand, this increases your chances of finding the right solution because it forces
you to put your thoughts in a coherent manner. On the other hand, this helps the
interviewer guide your thought process in the right direction. Even if you are not able
to reach the solution, the interviewer will form some impression of your intellectual
ability.

Apply patterns: Patterns—general reusable solutions to commonly occurring
problems—can be a good way to approach a baffling problem. Examples include
finding a good data structure, seeing if your problem is a good fit for a general al-
gorithmic technique, e.g., divide-and-conquer, recursion, or dynamic programming,
and mapping the problem to a graph. Patterns are described in much more detail in
Chapter 4.

Presenting the solution

Once you have an algorithm, it is important to present it in a clear manner. Your
solution will be much simpler if you use Java or C++, and take advantage of libraries
such as Collections or Boost. However, it is far more important that you use the
language you are most comfortable with. Here are some things to keep in mind
when presenting a solution.

Libraries: Master the libraries, especially the data structures. Do not waste time
and lose credibility trying to remember how to pass an explicit comparator to a BST
constructor. Remember that a hash function should use exactly those fields which
are used in the equality check. A comparison function should be transitive.

Focus on the top-level algorithm: It’s OK to use functions that you will implement
later. This will let you focus on the main part of the algorithm, will penalize you
less if you don’t complete the algorithm. (Hash, equals, and compare functions are
good candidates for deferred implementation.) Specify that you will handle main
algorithm first, then corner cases. Add TODO comments for portions that you want
to come back to.

Manage the whiteboard: You will likely use more of the board than you expect,
so start at the top-left corner. Have a system for abbreviating variables, e.g., declare
stackMax and then use sm for short. Make use of functions—skip implementing
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anything that’s trivial (e.g., finding the maximum of an array) or standard (e.g., a
thread pool).

Test for corner cases: For many problems, your general idea may work for
most inputs but there may be pathological instances where your algorithm (or your
implementation of it) fails. For example, your binary search code may crash if the
input is an empty array; or you may do arithmetic without considering the possibility
of overflow. It is important to systematically consider these possibilities. If there is
time, write unit tests. Small, extreme, or random inputs make for good stimuli. Don’t
forget to add code for checking the result. Often the code to handle obscure corner
cases may be too complicated to implement in an interview setting. If so, you should
mention to the interviewer that you are aware of these problems, and could address
them if required.

Syntax: Interviewers rarely penalize you for small syntax errors since modern
IDE excel at handling these details. However, lots of bad syntax may result in the
impression that you have limited coding experience. Once you are done writing your
program, make a pass through it to fix any obvious syntax errors before claiming
you are done. We use the Google coding style standards in this book, and advise
you to become proficient with them. They are available at code.google.com/p/google-
styleguide

Have a convention for identifiers, e.g., i,j,k for array indices, A,B,C for arrays,
hm for HashMap, s for a String, sb for a StringBuilder, etc.

Candidates often tend to get function signatures wrong and it reflects poorly on
them. For example, it would be an error to write a function in C that returns an array
but not its size. In C++ it is important to know whether to pass parameters by value
or by reference. Use const as appropriate.

Memory management: Generally speaking, it is best to avoid memory manage-
ment operations altogether. In C++, if you are using dynamic allocation consider
using scoped pointers. The run time environment will automatically deallocate the
object a scoped pointer points to when it goes out of scope. If you explicitly allocate
memory, ensure that in every execution path, this memory is de-allocated. See if you
can reuse space. For example, some linked list problems can be solved with O(1)
additional space by reusing existing nodes.

Know your interviewers & the company

It can help you a great deal if the company can share with you the background of
your interviewers in advance. You should use search and social networks to learn
more about the people interviewing you. Letting your interviewers know that you
have researched them helps break the ice and forms the impression that you are
enthusiastic and will go the extra mile. For fresh graduates, it is also important to
think from the perspective of the interviewers as described in Chapter 3.

Once you ace your interviews and have an offer, you have an important decision
to make—is this the organization where you want to work? Interviews are a great
time to collect this information. Interviews usually end with the interviewers letting
the candidates ask questions. You should make the best use of this time by getting
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the information you would need and communicating to the interviewer that you are
genuinely interested in the job. Based on your interaction with the interviewers, you
may get a good idea of their intellect, passion, and fairness. This extends to the team
and company.

In addition to knowing your interviewers, you should know about the company
vision, history, organization, products, and technology. You should be ready to talk
about what specifically appeals to you, and to ask intelligent questions about the
company and the job. Prepare a list of questions in advance; it gets you helpful
information as well as shows your knowledge and enthusiasm for the organization.
You may also want to think of some concrete ideas around things you could do for
the company; be careful not to come across as a pushy know-it-all.

All companies want bright and motivated engineers. However, companies differ
greatly in their culture and organization. Here is a brief classification.

Startup, e.g., Quora: values engineers who take initiative and develop products
on their own. Such companies do not have time to train new hires, and tend to hire
candidates who are very fast learners or are already familiar with their technology
stack, e.g., their web application framework, machine learning system, etc.

Mature consumer-facing company, e.g., Google: wants candidates who under-
stand emerging technologies from the user’s perspective. Such companies have
a deeper technology stack, much of which is developed in-house. They have the
resources and the time to train a new hire.

Enterprise-oriented company, e.g., Oracle: looks for developers familiar with
how large projects are organized, e.g., engineers who are familiar with reviews,
documentation, and rigorous testing.

Government contractor, e.g., Lockheed-Martin: values knowledge of specifi-
cations and testing, and looks for engineers who are familiar with government-
mandated processes.

Embedded systems/chip design company, e.g., National Instruments: wants
software engineers who know enough about hardware to interface with the hardware
engineers. The tool chain and development practices at such companies tend to be
very mature.

General conversation

Often interviewers will ask you questions about your past projects, such as a senior
design project or an internship. The point of this conversation is to answer the
following questions:

Can the candidate clearly communicate a complex idea? This is one of the most
important skills for working in an engineering team. If you have a grand idea to
redesign a big system, can you communicate it to your colleagues and bring them
on board? It is crucial to practice how you will present your best work. Being
precise, clear, and having concrete examples can go a long way here. Candidates
communicating in a language that is not their first language, should take extra care
to speak slowly and make more use of the whiteboard to augment their words.
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Is the candidate passionate about his work? We always want our colleagues to
be excited, energetic, and inspiring to work with. If you feel passionately about your
work, and your eyes light up when describing what you’ve done, it goes a long way
in establishing you as a great colleague. Hence, when you are asked to describe a
project from the past, it is best to pick something that you are passionate about rather
than a project that was complex but did not interest you.

Is there a potential interest match with some project? The interviewer may
gauge areas of strengths for a potential project match. If you know the requirements
of the job, you may want to steer the conversation in that direction. Keep in mind
that because technology changes so fast many teams prefer a strong generalist, so
don’t pigeonhole yourself.

Other advice

Be honest: Nobody wants a colleague who falsely claims to have tested code or done
a code review. Dishonesty in an interview is a fast pass to an early exit.

Remember, nothing breaks the truth more than stretching it—you should be ready
to defend anything you claim on your résumé. If your knowledge of Python extends
only as far as having cut-and-paste sample code, do not add Python to your résumé.

Similarly, if you have seen a problem before, you should say so. (Be sure that it
really is the same problem, and bear in mind you should describe a correct solution
quickly if you claim to have solved it before.) Interviewers have been known to
collude to ask the same question of a candidate to see if he tells the second interviewer
about the first instance. An interviewer may feign ignorance on a topic he knows in
depth to see if a candidate pretends to know it.

Keep a positive spirit: A cheerful and optimistic attitude can go a long way.
Absolutely nothing is to be gained, and much can be lost, by complaining how
difficult your journey was, how you are not a morning person, how inconsiderate
the airline/hotel/HR staff were, etc.

Don’t apologize: Candidates sometimes apologize in advance for a weak GPA,
rusty coding skills, or not knowing the technology stack. Their logic is that by being
proactive they will somehow benefit from lowered expectations. Nothing can be
further from the truth. It focuses attention on shortcomings. More generally, if you
do not believe in yourself, you cannot expect others to believe in you.

Appearance: Most software companies have a relaxed dress-code, and new grad-
uates may wonder if they will look foolish by overdressing. The damage done when
you are too casual is greater than the minor embarrassment you may feel at being
overdressed. It is always a good idea to err on the side of caution and dress formally
for your interviews. At the minimum, be clean and well-groomed.

Be aware of your body language: Think of a friend or coworker slouched all the
time or absentmindedly doing things that may offend others. Work on your posture,
eye contact and handshake, and remember to smile.

Keep money and perks out of the interview: Money is a big element in any job
but it is best left discussed with the HR division after an offer is made. The same is
true for vacation time, day care support, and funding for conference travel.
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Stress interviews

Some companies, primarily in the finance industry, make a practice of having one
of the interviewers create a stressful situation for the candidate. The stress may be
injected technically, e.g., via a ninja problem, or through behavioral means, e.g., the
interviewer rejecting a correct answer or ridiculing the candidate. The goal is to see
how a candidate reacts to such situations—does he fall apart, become belligerent, or
get swayed easily. The guidelines in the previous section should help you through a
stress interview. (Bear in mind you will not know a priori if a particular interviewer
will be conducting a stress interview.)

Learning from bad outcomes

The reality is that not every interview results in a job offer. There are many reasons
for not getting a particular job. Some are technical: you may have missed that key
flash of insight, e.g., the key to solving the maximum-profit on Page 1 in linear time.
If this is the case, go back and solve that problem, as well as related problems.

Often, your interviewer may have spent a few minutes looking at your résumé—
this is a depressingly common practice. This can lead to your being asked questions
on topics outside of the area of expertise you claimed on your résumé, e.g., routing
protocols or Structured Query Language (SQL). If so, make sure your résumé is
accurate, and brush up on that topic for the future.

You can fail an interview for nontechnical reasons, e.g., you came across as un-
interested, or you did not communicate clearly. The company may have decided
not to hire in your area, or another candidate with similar ability but more relevant
experience was hired.

You will not get any feedback from a bad outcome, so it is your responsibility
to try and piece together the causes. Remember the only mistakes are the ones you
don’t learn from.

Negotiating an offer

An offer is not an offer till it is on paper, with all the details filled in. All offers are
negotiable. We have seen compensation packages bargained up to twice the initial
offer, but 10–20% is more typical. When negotiating, remember there is nothing to be
gained, and much to lose, by being rude. (Being firm is not the same as being rude.)

To get the best possible offer, get multiple offers, and be flexible about the form of
your compensation. For example, base salary is less flexible than stock options, sign-
on bonus, relocation expenses, and Immigration and Naturalization Service (INS)
filing costs. Be concrete—instead of just asking for more money, ask for a P% higher
salary. Otherwise the recruiter will simply come back with a small increase in the
sign-on bonus and claim to have met your request.

Your HR contact is a professional negotiator, whose fiduciary duty is to the com-
pany. He will know and use negotiating techniques such as reciprocity, getting
consensus, putting words in your mouth (“don’t you think that’s reasonable?”), as
well as threats, to get the best possible deal for the company. (This is what recruiters
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themselves are evaluated on internally.) The Wikipedia article on negotiation lays
bare many tricks we have seen recruiters employ.

One suggestion: stick to email, where it is harder for someone to paint you into
a corner. If you are asked for something (such as a copy of a competing offer), get
something in return. Often it is better to bypass the HR contact and speak directly
with the hiring manager.

At the end of the day, remember your long term career is what counts, and joining
a company that has a brighter future (social-mobile vs. legacy enterprise), or offers
a position that has more opportunities to rise (developer vs. tester) is much more
important than a 10–20% difference in compensation.
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3
Conducting An Interview

知己知彼，百戰不殆。

Translated—“If you know both yourself and
your enemy, you can win numerous battles
without jeopardy.”

— “The Art of War,”
Sun Tzu, 515 B.C.

In this chapter we review practices that help interviewers identify a top hire. We
strongly recommend interviewees read it—knowing what an interviewer is looking
for will help you present yourself better and increase the likelihood of a successful
outcome.

For someone at the beginning of their career, interviewing may feel like a huge
responsibility. Hiring a bad candidate is expensive for the organization, not just
because the hire is unproductive, but also because he is a drain on the productivity
of his mentors and managers, and sets a bad example. Firing someone is extremely
painful as well as bad for to the morale of the team. On the other hand, discarding
good candidates is problematic for a rapidly growing organization. Interviewers
also have a moral responsibility not to unfairly crush the interviewee’s dreams and
aspirations.

Objective

The ultimate goal of any interview is to determine the odds that a candidate will
be a successful employee of the company. The ideal candidate is smart, dedicated,
articulate, collegial, and gets things done quickly, both as an individual and in a
team. Ideally, your interviews should be designed such that a good candidate scores
1.0 and a bad candidate scores 0.0.

One mistake, frequently made by novice interviewers, is to be indecisive. Unless
the candidate walks on water or completely disappoints, the interviewer tries not to
make a decision and scores the candidate somewhere in the middle. This means that
the interview was a wasted effort.

A secondary objective of the interview process is to turn the candidate into a
brand ambassador for the recruiting organization. Even if a candidate is not a good
fit for the organization, he may know others who would be. It is important for the
candidate to have an overall positive experience during the process. It seems obvious
that it is a bad idea for an interviewer to check email while the candidate is talking
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or insult the candidate over a mistake he made, but such behavior is depressingly
common. Outside of a stress interview, the interviewer should work on making the
candidate feel positively about the experience, and, by extension, the position and
the company.

What to ask

One important question you should ask yourself as an interviewer is how much
training time your work environment allows. For a startup it is important that a
new hire is productive from the first week, whereas a larger organization can budget
for several months of training. Consequently, in a startup it is important to test the
candidate on the specific technologies that he will use, in addition to his general
abilities.

For a larger organization, it is reasonable not to emphasize domain knowledge
and instead test candidates on data structures, algorithms, system design skills, and
problem solving techniques. The justification for this is as follows. Algorithms,
data structures, and system design underlie all software. Algorithms and data struc-
ture code is usually a small component of a system dominated by the user interface
(UI), input/output (I/O), and format conversion. It is often hidden in library calls.
However, such code is usually the crucial component in terms of performance and
correctness, and often serves to differentiate products. Furthermore, platforms and
programming languages change quickly but a firm grasp of data structures, algo-
rithms, and system design principles, will always be a foundational part of any
successful software endeavor. Finally, many of the most successful software compa-
nies have hired based on ability and potential rather than experience or knowledge
of specifics, underlying the effectiveness of this approach to selecting candidates.

Most big organizations have a structured interview process where designated
interviewers are responsible for probing specific areas. For example, you may be
asked to evaluate the candidate on their coding skills, algorithm knowledge, critical
thinking, or the ability to design complex systems. This book gives interviewers
access to a fairly large collection of problems to choose from. When selecting a
problem keep the following in mind:

No single point of failure—if you are going to ask just one question, you should
not pick a problem where the candidate passes the interview if and only if he gets
one particular insight. The best candidate may miss a simple insight, and a mediocre
candidate may stumble across the right idea. There should be at least two or three
opportunities for the candidates to redeem themselves. For example, problems that
can be solved by dynamic programming can almost always be solved through a
greedy algorithm that is fast but suboptimum or a brute-force algorithm that is slow
but optimum. In such cases, even if the candidate cannot get the key insight, he can
still demonstrate some problem solving abilities. Problem 6.2 on Page 47 exemplifies
this type of question.

Multiple possible solutions—if a given problem has multiple solutions, the
chances of a good candidate coming up with a solution increases. It also gives
the interviewer more freedom to steer the candidate. A great candidate may finish
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with one solution quickly enough to discuss other approaches and the trade-offs
between them. For example, Problem 12.4 on Page 67 can be solved using a hash
table or a bit array; the best solution makes use of binary search.

Cover multiple areas—even if you are responsible for testing the candidate on
algorithms, you could easily pick a problem that also exposes some aspects of design
and software development. For example, Problem 20.2 on Page 94 tests candidates
on concurrency as well as data structures.

Calibrate on colleagues—interviewers often have an incorrect notion of how
difficult a problem is for a thirty minute or one hour interview. It is a good idea to
check the appropriateness of a problem by asking one of your colleagues to solve it
and seeing how much difficulty they have with it.

No unnecessary domain knowledge—it is not a good idea to quiz a candidate on
advanced graph algorithms if the job does not require it and the candidate does not
claim any special knowledge of the field. (The exception to this rule is if you want to
test the candidate’s response to stress.)

Conducting the interview

Conducting a good interview is akin to juggling. At a high level, you want to ask
your questions and evaluate the candidate’s responses. Many things can happen in
an interview that could help you reach a decision, so it is important to take notes. At
the same time, it is important to keep a conversation going with the candidate and
help him out if he gets stuck. Ideally, have a series of hints worked out beforehand,
which can then be provided progressively as needed. Coming up with the right set
of hints may require some thinking. You do not want to give away the problem, yet
find a way for the candidate to make progress. Here are situations that may throw
you off:

A candidate that gets stuck and shuts up: Some candidates get intimidated by
the problem, the process, or the interviewer, and just shut up. In such situations, a
candidate’s performance does not reflect his true caliber. It is important to put the
candidate at ease, e.g., by beginning with a straightforward question, mentioning
that a problem is tough, or asking them to think out loud.

A verbose candidate: Candidates who go off on tangents and keep on talking
without making progress render an interview ineffective. Again, it is important to
take control of the conversation. For example you could assert that a particular path
will not make progress.

An overconfident candidate: It is common to meet candidates who weaken their
case by defending an incorrect answer. To give the candidate a fair chance, it is
important to demonstrate to him that he is making a mistake, and allow him to
correct it. Often the best way of doing this is to construct a test case where the
candidate’s solution breaks down.

Scoring and reporting

At the end of an interview, the interviewers usually have a good idea of how the
candidate scored. However, it is important to keep notes and revisit them before
making a final decision. Whiteboard snapshots and samples of any code that the
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candidate wrote should also be recorded. You should standardize scoring based on
which hints were given, how many questions the candidate was able to get to, etc.
Although isolated minor mistakes can be ignored, sometimes when you look at all
the mistakes together, clear signs of weakness in certain areas may emerge, such as
a lack of attention to detail and unfamiliarity with a language.

When the right choice is not clear, wait for the next candidate instead of possibly
making a bad hiring decision. The litmus test is to see if you would react positively
to the candidate replacing a valuable member of your team.
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4
Problem Solving Patterns

It’s not that I’m so smart, it’s just that I stay with problems longer.

— A. Einstein

Developing problem solving skills is like learning to play a musical instrument—
books and teachers can point you in the right direction, but only your hard work
will take you there. Just as a musician, you need to know underlying concepts, but
theory is no substitute for practice.

Great problem solvers have skills that cannot be rigorously formalized. Still, when
faced with a challenging programming problem, it is helpful to have a small set of
“patterns”—general reusable solutions to commonly occurring problems—that may
be applicable.

We now introduce several patterns and illustrate them with examples. We have
classified these patterns into the following categories:
− data structure patterns,
− algorithm design patterns,
− abstract analysis patterns, and
− system design patterns.

These patterns are summarized in Table 4.1 on the facing page, Table 4.2 on Page 28,
Table 4.3 on Page 33, and Table 4.5 on Page 37, respectively. Keep in mind that you
may have to use more than one of these patterns for a given problem.

The two most common criteria for comparing algorithms are runtime and memory
usage. Much of the discussion around patterns uses the “big-Oh” notation to describe
these more formally. We briefly review complexity analysis and intractable problems
at the end of this chapter.

Data structure patterns

A data structure is a particular way of storing and organizing related data items
so that they can be manipulated efficiently. Usually, the correct selection of data
structures is key to designing a good algorithm. Different data structures are suited
to different applications; some are highly specialized. For example, heaps are par-
ticularly well-suited for algorithms that merge sorted data streams, while compiler
implementations usually use hash tables to lookup identifiers.

The data structures described in this chapter are the ones commonly used. Other
data structures, such as skip lists, treaps, Fibonacci heaps, tries, and disjoint-set data
structures, have more specialized applications.
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Solutions often require a combination of data structures. For example, tracking
the most visited pages on a website involves a combination of a heap, a queue, a
binary search tree, and a hash table.

Table 4.1: Data structure patterns.

Data structure Key points
Primitive types Know how int, char, double, etc. are represented in

memory and the primitive operations on them.
Arrays Fast access for element at an index, slow lookups (un-

less sorted) and insertions. Be comfortable with no-
tions of iteration, resizing, partitioning, merging, etc.

Strings Know how strings are represented in memory. Under-
stand basic operators such as comparison, copying,
matching, joining, splitting, etc.

Lists Understand trade-offs with respect to arrays. Be com-
fortable with iteration, insertion, and deletion within
singly and doubly linked lists. Know how to imple-
ment a list with dynamic allocation, and with arrays.

Stacks and queues Understand insertion and deletion. Know array and
linked list implementations.

Binary trees Use for representing hierarchical data. Know about
depth, height, leaves, search path, traversal sequences,
successor/predecessor operations.

Heaps Key benefit: O(1) lookup find-max, O(log n) insertion,
and O(log n) deletion of max. Node and array repre-
sentations. Min-heap variant.

Hash tables Key benefit: O(1) insertions, deletions and lookups.
Key disadvantages: not suitable for order-related
queries; need for resizing; poor worst-case perfor-
mance. Understand implementation using array of
buckets and collision chains. Know hash functions for
integers, strings, objects. Understand importance of
equals function. Variants such as Bloom filters.

Binary search trees Key benefit: O(log n) insertions, deletions, lookups,
find-min, find-max, successor, predecessor when tree
is balanced. Understand node fields, pointer imple-
mentation. Be familiar with notion of balance, and op-
erations maintaining balance. Know how to augment
a binary search tree, e.g., interval trees and dynamic
k-th largest.

Primitive types

You should be comfortable with the basic types (chars, integers, doubles, etc.), their
variants (unsigned, long, etc.), and operations on them (bitwise operators, compar-
ison, etc.). Don’t forget that the basic types differ among programming languages.
For example, Java has no unsigned integers, and the integer width is compiler- and
machine-dependent in C.
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A common problem related to basic types is computing the number of bits set
to 1 in an integer-valued variable x. To solve this problem you need to know how
to manipulate individual bits in an integer. One straightforward approach is to
iteratively test individual bits using an unsigned integer variable m initialized to 1.
Iteratively identify bits of x that are set to 1 by examining the bitwise AND of m with
x, shifting m left one bit at a time. The overall complexity isO(n) where n is the length
of the integer.

Another approach, which may run faster on some inputs, is based on computing
y = x & ~(x−1), where & is the bitwise AND operator and ~ is the bitwise complement
operator. The variable y is 1 at exactly the lowest set bit of x; all other bits in y are
0. For example, if x = (0110)2, then y = (0010)2. This calculation is correct both
for unsigned and two’s-complement representations. Consequently, this bit may be
removed from x by computing x ⊕ y, where ⊕ is the bitwise-XOR function. The time
complexity is O(s), where s is the number of bits set to 1 in x.

In practice, if the computation is done repeatedly, the most efficient approach
would be to create a lookup table. In this case, we could use a 65536 entry
integer-valued array P, such that P[i] is the number of bits set to 1 in i. If x is
64 bits, the result can be computed by decomposing x into 4 disjoint 16-bit words,
h3, h2, h1, and h0. The 16-bit words are computed using bitmasks and shifting, e.g.,
h1 is (x� 16 & (1111111111111111)2). The final result is P[h3] + P[h2] + P[h1] + P[h0].

Arrays

Conceptually, an array maps integers in the range [0,n− 1] to objects of a given type,
where n is the number of objects in this array. Array lookup and insertion are fast,
making arrays suitable for a variety of applications. Reading past the last element of
an array is a common error, invariably with catastrophic consequences.

The following problem arises when optimizing quicksort: given an array A whose
elements are comparable, and an index i, reorder the elements of A so that the initial
elements are all less than A[i], and are followed by elements equal to A[i], which in
turn are followed by elements greater than A[i], using O(1) space.

The key to the solution is to maintain two regions on opposite sides of the array
that meet the requirements, and expand these regions one element at a time.

Strings

A string can be viewed as a special kind of array, namely one made out of charac-
ters. We treat strings separately from arrays because certain operations which are
commonly applied to strings—for example, comparison, joining, splitting, searching
for substrings, replacing one string by another, parsing, etc.—do not make sense for
general arrays.

Our solution to the look-and-say problem illustrates operations on strings. The
look-and-say sequence begins with 1; the subsequent integers describe the dig-
its appearing in the previous number in the sequence. The first eight integers in
the look-and-say sequence are 〈1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211〉.
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The look-and-say problem entails computing the n-th integer in this sequence. Al-
though the problem is cast in terms of integers, the string representation is far more
convenient for counting digits.

Lists

An abstract data type (ADT) is a mathematical model for a class of data structures that
have similar functionality. Strictly speaking, a list is an ADT, and not a data structure.
It implements an ordered collection of values, which may include repetitions. In the
context of this book we view a list as a sequence of nodes where each node has a link
to the next node in the sequence. In a doubly linked list each node also has a link to
the prior node.

A list is similar to an array in that it contains objects in a linear order. The key
differences are that inserting and deleting elements in a list has time complexityO(1).
On the other hand, obtaining the k-th element in a list is expensive, having O(n)
time complexity. Lists are usually building blocks of more complex data structures.
However, they can be the subject of tricky problems in their own right, as illustrated
by the following:

Given a singly linked list 〈l0, l1, l2, . . . , ln−1〉, define the “zip” of the list to be
〈l0, ln−1, l1, ln−2, . . . 〉. Suppose you were asked to write a function that computes the
zip of a list, with the constraint that it uses O(1) space. The operation of this function
is illustrated in Figure 4.1.

L l0
0x1000

l1
0x1240

l2
0x1830

l3
0x2110

l4
0x2200

(a) List before zipping. The number in hex below each node represents its address in memory.

L l0
0x1000

l4
0x2200

l1
0x1240

l3
0x2110

l2
0x1830

(b) List after zipping. Note that nodes are reused—no memory has been allocated.

Figure 4.1: Zipping a list.

The solution is based on an appropriate iteration combined with “pointer swap-
ping”, i.e., updating next field for each node.

Stacks and queues

Stacks support last-in, first-out semantics for inserts and deletes, whereas queues are
first-in, first-out. Both are ADTs, and are commonly implemented using linked lists
or arrays. Similar to lists, stacks and queues are usually building blocks in a solution
to a complex problem, but can make for interesting problems in their own right.

As an example consider the problem of evaluating Reverse Polish notation expres-
sions, i.e., expressions of the form “3, 4,×, 1, 2,+,+”, “1, 1,+,−2,×”, or “4, 6, /, 2, /”.
A stack is ideal for this purpose—operands are pushed on the stack, and popped as
operators are processed, with intermediate results being pushed back onto the stack.
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Binary trees

A binary tree is a data structure that is used to represent hierarchical relationships.
Binary trees are the subject of Chapter 10. Binary trees most commonly occur in the
context of binary search trees, wherein keys are stored in a sorted fashion. However,
there are many other applications of binary trees. Consider a set of resources orga-
nized as nodes in a binary tree. Processes need to lock resource nodes. A node may
be locked if and only if none of its descendants and ancestors are locked. Your task
is to design and implement an application programming interface (API) for locking.

A reasonable API is one with isLocked(), lock(), and unLock() methods.
Naively implemented, the time complexity for these methods is O(n), where n is
the number of nodes. However, these can be made to run in time O(1), O(h), and
O(h), respectively, where h is the height of the tree, if nodes have a parent field.

Heaps

A heap is a data structure based on a binary tree. It efficiently implements an ADT
called a priority queue. A priority queue resembles a queue, with one difference:
each element has a “priority” associated with it, and deletion removes the element
with the highest priority.

Let’s say you are given a set of files, each containing stock trade information. Each
trade appears as a separate line containing information about that trade. Lines begin
with an integer-valued timestamp, and lines within a file are sorted in increasing
order of timestamp. Suppose you were asked to design an algorithm that combines
the set of files into a single file R in which trades are sorted by timestamp.

This problem can be solved by a multistage merge process, but there is a trivial
solution based on a min-heap data structure. Entries are trade-file pairs and are
ordered by the timestamp of the trade. Initially, the min-heap contains the first trade
from each file. Iteratively delete the minimum entry e = (t, f ) from the min-heap,
write t to R, and add in the next entry in the file f .

Hash tables

A hash table is a data structure used to store keys, optionally, with corresponding
values. Inserts, deletes and lookups run in O(1) time on average. One caveat is that
these operations require a good hash function—a mapping from the set of all possible
keys to the integers which is similar to a uniform random assignment. Another caveat
is that if the number of keys that is to be stored is not known in advance then the
hash table needs to be periodically resized, which, depending on how the resizing is
implemented, can lead to some updates having O(n) complexity.

Suppose you were asked to write a function which takes a string s as input, and
returns true if the characters in s can be permuted to form a string that is palindromic,
i.e., reads the same backwards as forwards. For example, your function should return
true for “GATTAACAG”, since “GATACATAG” is a permutation of this string and is
palindromic. Working through examples, you should see that a string is palindromic
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if and only if each character appears an even number of times, with possibly a single
exception, since this allows for pairing characters in the first and second halves.

A hash table makes performing this test trivial. We build a hash table H whose
keys are characters, and corresponding values are the number of occurrences for
that character. The hash table H is created with a single pass over the string. After
computing the number of occurrences, we iterate over the key-value pairs in H. If
more than one character has an odd count, we return false; otherwise, we return true.

Suppose you were asked to write an application that compares n programs for
plagiarism. Specifically, your application is to break every program into overlapping
character strings, each of length 100, and report on the number of strings that appear
in each pair of programs. A hash table can be used to perform this check very
efficiently if the right hash function is used.

Binary search trees

Binary search trees (BSTs) are used to store objects that are comparable. BSTs are the
subject of Chapter 15. The underlying idea is to organize the objects in a binary tree
in which the nodes satisfy the BST property on Page 74. Insertion and deletion can
be implemented so that the height of the BST is O(log n), leading to fast (O(log n))
lookup and update times. AVL trees and red-black trees are BST implementations
that support this form of insertion and deletion.

BSTs are a workhorse of data structures and can be used to solve almost every
data structures problem reasonably efficiently. It is common to augment the BST to
make it possible to manipulate more complicated data, e.g., intervals, and efficiently
support more complex queries, e.g., the number of elements in a range.

As an example application of BSTs, consider the following problem. You are given
a set of line segments. Each segment is a closed interval [li, ri] of the x-axis, a color,
and a height. For simplicity assume no two segments whose intervals overlap have
the same height. When the x-axis is viewed from above the color at point x on the
x-axis is the color of the highest segment that includes x. (If no segment contains x,
the color is blank.) You are to implement a function that computes the sequence of
colors as seen from the top.

The key idea is to sort the endpoints of the line segments and do a sweep from
left-to-right. As we do the sweep, we maintain a list of line segments that intersect
the current position as well as the highest line and its color. To quickly lookup the
highest line in a set of intersecting lines we keep the current set in a BST, with the
interval’s height as its key.

Algorithm design patterns

An algorithm is a step-by-step procedure for performing a calculation. We classify
common algorithm design patterns in Table 4.2 on the following page. Roughly
speaking, each pattern corresponds to a design methodology. An algorithm may use
a combination of patterns.
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Table 4.2: Algorithm design patterns.

Technique Key points
Sorting Uncover some structure by sorting the input.
Recursion If the structure of the input is defined in a recursive

manner, design a recursive algorithm that follows the
input definition.

Divide-and-conquer Divide the problem into two or more smaller inde-
pendent subproblems and solve the original problem
using solutions to the subproblems.

Dynamic program-
ming

Compute solutions for smaller instances of a given
problem and use these solutions to construct a solution
to the problem. Cache for performance.

Greedy algorithms Compute a solution in stages, making choices that are
locally optimum at step; these choices are never un-
done.

Invariants Identify an invariant and use it to rule out potential
solutions that are suboptimal/dominated by other so-
lutions.

Sorting

Certain problems become easier to understand, as well as solve, when the input
is sorted. The solution to the calendar rendering problem entails taking a set of
intervals and computing the maximum number of intervals whose intersection is
nonempty. Naïve strategies yield quadratic run times. However, once the interval
endpoints have been sorted, it is easy to see that a point of maximum overlap can be
determined by a linear time iteration through the endpoints.

Often it is not obvious what to sort on—for example, we could have sorted the
intervals on starting points rather than endpoints. This sort sequence, which in some
respects is more natural, does not work. However, some experimentation with it
will, in all likelihood, lead to the correct criterion.

Sorting is not appropriate when anO(n) (or better) algorithm is possible. Another
good example of a problem where a total ordering is not required is the problem
of rearranging elements in an array described on Page 35. Furthermore, sorting
can obfuscate the problem. For example, given an array A of numbers, if we are
to determine the maximum of A[i] − A[ j], for i < j, sorting destroys the order and
complicates the problem.

Recursion

A recursive function consists of base cases and calls to the same function with different
arguments. A recursive algorithm is often appropriate when the input is expressed
using recursive rules, such as a computer grammar. More generally, searching,
enumeration, divide-and-conquer, and decomposing a complex problem into a set
of similar smaller instances are all scenarios where recursion may be suitable.
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String matching exemplifies the use of recursion. Suppose you were asked to
write a Boolean-valued function which takes a string and a matching expression,
and returns true iff the matching expression “matches” the string. Specifically, the
matching expression is itself a string, and could be
− x, where x is a character, for simplicity assumed to be a lowercase letter (matches

the string “x”).
− . (matches any string of length 1).
− x∗ (matches the string consisting of zero or more occurrences of the character x).
− .∗ (matches the string consisting of zero or more of any characters).
− r1r2, where r1 and r2 are regular expressions of the given form (matches any

string that is the concatenation of strings s1 and s2, where r1 matches s1 and r2

matches s2).
This problem can be solved by checking a number of cases based on the first one

or two characters of the matching expression, and recursively matching the rest of
the string.

Divide-and-conquer

A divide-and-conquer algorithm works by decomposing a problem into two or more
smaller independent subproblems until it gets to instances that are simple enough to
be solved directly; the results from the subproblems are then combined. More details
and examples are given in Chapter 18; we illustrate the basic idea below.

A triomino is formed by joining three unit-sized squares in an L-shape. A mu-
tilated chessboard (henceforth 8 × 8 Mboard) is made up of 64 unit-sized squares
arranged in an 8 × 8 square, minus the top-left square, as depicted in Figure 4.2(a).
Suppose you are asked to design an algorithm that computes a placement of 21 tri-
ominoes that covers the 8 × 8 Mboard. Since the 8 × 8 Mboard contains 63 squares,
and we have 21 triominoes, a valid placement cannot have overlapping triominoes
or triominoes which extend out of the 8 × 8 Mboard.

Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z

(a) An 8 × 8 Mboard.

Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z

(b) Four 4 × 4 Mboards.

Figure 4.2: Mutilated chessboards.
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Divide-and-conquer is a good strategy for this problem. Instead of the 8 × 8
Mboard, let’s consider an n × n Mboard. A 2 × 2 Mboard can be covered with one
triomino since it is of the same exact shape. You may hypothesize that a triomino
placement for an n × n Mboard with the top-left square missing can be used to
compute a placement for an (n + 1) × (n + 1) Mboard. However, you will quickly see
that this line of reasoning does not lead you anywhere.

Another hypothesis is that if a placement exists for an n × n Mboard, then one
also exists for a 2n × 2n Mboard. Now we can apply divide-and-conquer. Take four
n × n Mboards and arrange them to form a 2n × 2n square in such a way that three
of the Mboards have their missing square set towards the center and one Mboard
has its missing square outward to coincide with the missing corner of a 2n × 2n
Mboard, as shown in Figure 4.2(b) on the previous page. The gap in the center can
be covered with a triomino and, by hypothesis, we can cover the four n× n Mboards
with triominoes as well. Hence, a placement exists for any n that is a power of 2. In
particular, a placement exists for the 23

× 23 Mboard; the recursion used in the proof
directly yields the placement.

Divide-and-conquer is usually implemented using recursion. However, the two
concepts are not synonymous. Recursion is more general—subproblems do not have
to be of the same form.

In addition to divide-and-conquer, we used the generalization principle above.
The idea behind generalization is to find a problem that subsumes the given problem
and is easier to solve. We used it to go from the 8 × 8 Mboard to the 2n

× 2n Mboard.
Other examples of divide-and-conquer include solving the number of pairs of

elements in an array that are out of sorted order and computing the closest pair of
points in a set of points in the plane.

Dynamic programming

Dynamic programming (DP) is applicable when the problem has the “optimal sub-
structure” property, that is, it is possible to reconstruct a solution to the given instance
from solutions to subinstances of smaller problems of the same kind. A key aspect
of DP is maintaining a cache of solutions to subinstances. DP can be implemented
recursively (in which case the cache is typically a dynamic data structure such as a
hash table or a BST), or iteratively (in which case the cache is usually a one- or multi-
dimensional array). It is most natural to design a DP algorithm using recursion.
Usually, but not always, it is more efficient to implement it using iteration.

As an example of the power of DP, consider the problem of determining the
number of combinations of 2, 3, and 7 point plays that can generate a score of
222. Let C(s) be the number of combinations that can generate a score of s. Then
C(222) = C(222 − 7) + C(222 − 3) + C(222 − 2), since a combination ending with a 2
point play is different from the one ending with a 3 point play, and a combination
ending with a 3 point play is different from the one ending with a 7 point play, etc.

The recursion ends at small scores, specifically, when (1.) s < 0 ⇒ C(s) = 0, and
(2.) s = 0 ⇒ C(s) = 1.
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Implementing the recursion naïvely results in multiple calls to the same subin-
stance. Let C(a) � C(b) indicate that a call to C with input a directly calls C with input
b. Then C(213) will be called in the order C(222) � C(222 − 7) � C((222 − 7) − 2), as
well as C(222) � C(222 − 3) � C((222 − 3) − 3) � C(((222 − 3) − 3) − 3).

This phenomenon results in the run time increasing exponentially with the size
of the input. The solution is to store previously computed values of C in an array of
length 223. Details are given in Solution 17.1 on Page 155.

Greedy algorithms

A greedy algorithm is one which makes decisions that are locally optimum and
never changes them. This strategy does not always yield the optimum solution.
Furthermore, there may be multiple greedy algorithms for a given problem, and
only some of them are optimum.

For example, consider 2n cities on a line, half of which are white, and the other
half are black. We want to map white to black cities in a one-to-one fashion so that
the total length of the road sections required to connect paired cities is minimized.
Multiple pairs of cities may share a single section of road, e.g., if we have the pairing
(0, 4) and (1, 2) then the section of road between Cities 0 and 4 can be used by Cities 1
and 2.

The most straightforward greedy algorithm for this problem is to scan through
the white cities, and, for each white city, pair it with the closest unpaired black city.
This algorithm leads to suboptimum results. Consider the case where white cities
are at 0 and at 3 and black cities are at 2 and at 5. If the straightforward greedy
algorithm processes the white city at 3 first, it pairs it with 2, forcing the cities at 0
and 5 to pair up, leading to a road length of 5, whereas the pairing of cities at 0 and
2, and 3 and 5 leads to a road length of 4.

However, a slightly more sophisticated greedy algorithm does lead to optimum
results: iterate through all the cities in left-to-right order, pairing each city with the
nearest unpaired city of opposite color. More succinctly, let W and B be the arrays
of white and black city coordinates. Sort W and B, and pair W[i] with B[i]. We can
prove this leads to an optimum pairing by induction. The idea is that the pairing for
the first city must be optimum, since if it were to be paired with any other city, we
could always change its pairing to be with the nearest black city without adding any
road.

Chapter 18 contains a number of problems whose solutions employ greedy al-
gorithms. representative. Several problems in other chapters also use a greedy
algorithm as a key subroutine.

Invariants

One common approach to designing an efficient algorithm is to use invariants.
Briefly, an invariant is a condition that is true during execution of a program. This
condition may be on the values of the variables of the program, or on the control

ElementsOfProgrammingInterviews.com



32 Chapter 4. Problem Solving Patterns

logic. A well-chosen invariant can be used to rule out potential solutions that are
suboptimal or dominated by other solutions.

An invariant can also be used to analyze a given algorithm, e.g., to prove its
correctness, or analyze its time complexity. Here our focus is on designing algorithms
with invariants, not analyzing them.

As an example, consider the 2-sum problem. We are given an array A of sorted
integers, and a target value K. We want to know if there exist entries i and j in A such
that A[i] + A[ j] = K.

The brute-force algorithm for the 2-sum problem consists of a pair of nested for
loops. Its complexity is O(n2), where n is the length of A. A faster approach is to add
each element of A to a hash H, and test for each i if K − A[i] is present in H. While
reducing time complexity to O(n), this approach requires O(n) additional storage for
H.

We want to compute i and j such that A[i] + A[ j] = K. Without loss of generality,
we can take i ≤ j. We know that 0 ≤ i, and j ≤ n − 1. A natural approach then is
to initialize i to 0, and j to n − 1, and then update i and j preserving the following
invariant:
− No i′ < i can ever be paired with any j′ such that A[i′] + A[ j′] = K, and
− No j′ > j can ever be paired with any i′ such that A[i′] + A[ j′] = K.

The invariant is certainly true at initialization, since there are no i′ < 0 and j′ > n− 1.
To show how i and j can be updated while ensuring the invariant continues to
hold, consider A[i] + A[ j]. If A[i] + A[ j] = K, we are done. Otherwise, consider
the case A[i] + A[ j] < K. We know from the invariant that for no j′ > j is there a
solution in which the element with the larger index is j′. The element at i cannot
be paired with any element at an index j′ smaller than j—because A is sorted,
A[i] + A[ j′] ≤ A[i] + A[ j] < K. Therefore, we can increment i, and preserve the
invariant. Similarly, in the case A[i] + A[ j] > K, we can decrement j and preserve the
invariant.

We terminate when either A[i] + A[ j] = K (success) or i > j (failure). At each step,
we increment or decrement i or j. Since there are at most n steps, and each takes
O(1) time, the time complexity is O(n). Correctness follows from the fact that the
invariant never discards a value for i or j which could possibly be the index of an
element which sums with another element to K.

Identifying the right invariant is an art. Usually, it is arrived at by studying
concrete examples and then making an educated guess. Often the first invariant is
too strong, i.e., it does not hold as the program executes, or too weak, i.e., it holds
throughout the program execution but cannot be used to infer the result.

In some cases it may be possible to “prune” dominated solutions, i.e., solutions
which cannot be better than previously explored solutions. The candidate solutions
are referred to as the “efficient frontier” which is propagated through the computa-
tion. The efficient frontier can be viewed as an invariant.

For example, suppose we need to implement a stack that supports the max()

method, which is defined to return the largest value stored in the stack. We can
associate for each entry in the stack the largest value stored at or below that entry.

ElementsOfProgrammingInterviews.com



Chapter 4. Problem Solving Patterns 33

This makes returning the largest value in the stack trivial. The invariant is that the
value associated for each entry is the largest value stored at or below that entry. The
invariant certainly continues to hold after a pop. To ensure the invariant holds after
a push, we compare the value v being pushed with the largest value m stored in the
stack prior to the push (which is the value associated with the entry currently at the
top of the stack), and associate the entry being pushed with the larger of v and m.

Abstract analysis patterns

The mathematician George Polya wrote a book How to Solve It that describes a number
of heuristics for problem solving. Inspired by this work we present some heuristics,
summarized in Table 4.3, that are especially effective on common interview problems.

Table 4.3: Abstract analysis techniques.

Analysis principle Key points
Concrete examples Manually solve concrete instances of the problem and

then build a general solution.
Case analysis Split the input/execution into a number of cases and

solve each case in isolation.
Iterative refinement Most problems can be solved using a brute-force ap-

proach. Find such a solution and improve upon it.
Reduction Use a well-known solution to some other problem as

a subroutine.
Graph modeling Describe the problem using a graph and solve it using

an existing algorithm.

Concrete examples

Problems that seem difficult to solve in the abstract can become much more tractable
when you examine concrete instances. Specifically, the following types of inputs can
offer tremendous insight:
− small inputs, such as an array or a BST containing 5–7 elements;
− extreme/specialized inputs, e.g., binary values, nonoverlapping intervals,

sorted arrays, connected graphs, etc.
Problems 5.5 on Page 44 and 16.1 on Page 76 are illustrative of small inputs, and
Problem 5.6 on Page 44 is illustrative of extreme/specialized inputs.

Consider the following problem. Five hundred closed doors along a corridor
are numbered from 1 to 500. A person walks through the corridor and opens each
door. Another person walks through the corridor and closes every alternate door.
Continuing in this manner, the i-th person comes and toggles the state (open or
closed) of every i-th door starting from Door i. You must determine exactly how
many doors are open after the 500-th person has walked through the corridor.

It is difficult to solve this problem using an abstract approach, e.g., introducing
Boolean variables for the state of each door and a state update function. However, if
you try the same problem with 1, 2, 3, 4, 10, and 20 doors, it takes a short time to see
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that the doors that remain open are 1, 4, 9, 16, . . . , regardless of the total number of
doors. The 10 doors case is illustrated in Figure 4.3. Now the pattern is obvious—
the doors that remain open are those corresponding to the perfect squares. Once
you make this connection, it is easy to prove it for the general case. Hence, the total
number of open doors is

⌊√
500

⌋
= 22. Solution 5.5 on Page 108 develops this analysis

in more detail.

1 2 3 4 5 6 7 8 9 10

(a) Initial configuration.

1 2 3 4 5 6 7 8 9 10

(b) After Person 1.

1 2 3 4 5 6 7 8 9 10

(c) After Person 2.

1 2 3 4 5 6 7 8 9 10

(d) After Person 3.

1 2 3 4 5 6 7 8 9 10

(e) After Person 4.

1 2 3 4 5 6 7 8 9 10

(f) After Person 10.

Figure 4.3: Progressive updates to 10 doors.

Case analysis

In case analysis, a problem is divided into a number of separate cases, and analyzing
each such case individually suffices to solve the initial problem. Cases do not have
to be mutually exclusive; however, they must be exhaustive, that is cover all possi-
bilities. For example, to prove that for all n, n3 mod 9 is 0, 1, or 8, we can consider the
cases n = 3m, n = 3m + 1, and n = 3m + 2. These cases are individually easy to prove,
and are exhaustive. Case analysis is commonly used in mathematics and games of
strategy. Here we consider an application of case analysis to algorithm design.

Suppose you are given a set S of 25 distinct integers and a CPU that has a special
instruction, SORT5, that can sort five integers in one cycle. Your task is to identify the
largest, second-largest, and third-largest integers in S using SORT5 to compare and
sort subsets of S; furthermore, you must minimize the number of calls to SORT5.

If all we had to compute was the largest integer in the set, the optimum approach
would be to form five disjoint subsets S1, . . . ,S5 of S, sort each subset, and then sort
{max S1, . . . ,max S5}. This takes six calls to SORT5 but leaves ambiguity about the
second and third largest integers.

It may seem like many additional calls to SORT5 are still needed. However, if you
do a careful case analysis and eliminate all x ∈ S for which there are at least three
integers in S larger than x, only five integers remain and hence just one more call to
SORT5 is needed to compute the result.
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Iterative refinement of a brute-force solution

Many problems can be solved optimally by a simple algorithm that has a high
time/space complexity—this is sometimes referred to as a brute-force solution. Other
terms are exhaustive search and generate-and-test. Often this algorithm can be refined
to one that is faster. At the very least it may offer hints into the nature of the problem.

As an example, suppose you were asked to write a function that takes an array A
of n numbers, and rearranges A’s elements to get a new array B having the property
that B[0] ≤ B[1] ≥ B[2] ≤ B[3] ≥ B[4] ≤ B[5] ≥ · · · .

One straightforward solution is to sort A and interleave the bottom and top
halves of the sorted array. Alternately, we could sort A and then swap the elements
at the pairs (A[1],A[2]), (A[3],A[4]), . . . . Both these approaches have the same time
complexity as sorting, namely O(n log n).

You will soon realize that it is not necessary to sort A to achieve the desired
configuration—you could simply rearrange the elements around the median, and
then perform the interleaving. Median finding can be performed in timeO(n), which
is the overall time complexity of this approach.

Finally, you may notice that the desired ordering is very local, and realize that it
is not necessary to find the median. Iterating through the array and swapping A[i]
and A[i + 1] when i is even and A[i] > A[i + 1] or i is odd and A[i] < A[i + 1] achieves
the desired configuration. In code:

1 void rearrange(vector<int>* A) {

2 vector<int>& B = *A;

3 for (size_t i = 1; i < B.size(); ++i) {

4 if ((!(i & 1) && B[i - 1] < B[i]) || ((i & 1) && B[i - 1] > B[i])) {

5 swap(B[i - 1], B[i]);

6 }

7 }

8 }

This approach has time complexityO(n), which is the same as the approach based
on median finding. However, it is much easier to implement and operates in an
online fashion, i.e., it never needs to store more than two elements in memory or
read a previous element.

As another example of iterative refinement, consider the problem of string search:
given two strings s (search string) and t (text), find all occurrences of s in t. Since
s can occur at any offset in t, the brute-force solution is to test for a match at every
offset. This algorithm is perfectly correct; its time complexity is O(nm), where n and
m are the lengths of s and t.

After trying some examples you may see that there are several ways to improve
the time complexity of the brute-force algorithm. As an example, if the character t[i]
is not present in s you can advance the matching by n characters. Furthermore, this
skipping works better if we match the search string from its end and work backwards.
These refinements will make the algorithm very fast (linear time) on random text and
search strings; however, the worst-case complexity remains O(nm).
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You can make the additional observation that a partial match of s that does not
result in a full match implies other offsets that cannot lead to full matches. If s =

abdabcabc and if, starting backwards, we have a partial match up to abcabc that does
not result in a full match, we know that the next possible matching offset has to be
at least three positions ahead (where we can match the second abc from the partial
match).

By putting together these refinements you will have arrived at the famous Boyer-
Moore string search algorithm—its worst-case time complexity is O(n + m) (which
is the best possible from a theoretical perspective); it is also one of the fastest string
search algorithms in practice.

As another example, the brute-force solution to computing the maximum subarray
sum for an integer array of length n is to compute the sum of all subarrays, which
has O(n3) time complexity. This can be improved to O(n2) by precomputing the
sums of all the prefixes of the given arrays; this allows the sum of a subarray to be
computed in O(1) time. The natural divide-and-conquer algorithm has an O(n log n)
time complexity. Finally, one can observe that a maximum subarray must end at
one of n indices, and the maximum subarray sum for a subarray ending at index i
can be computed from previous maximum subarray sums, which leads to an O(n)
algorithm. Details are presented on Page 79.

Reduction

Consider the problem of determining if one string is a rotation of the other, e.g.,
“car” and “arc” are rotations of each other. A natural approach may be to rotate the
first string by every possible offset and then compare it with the second string. This
algorithm would have quadratic time complexity.

You may notice that this problem is quite similar to string search, which can be
done in linear time, albeit using a somewhat complex algorithm. Therefore, it is
natural to try to reduce this problem to string search. Indeed, if we concatenate the
second string with itself and search for the first string in the resulting string, we will
find a match iff the two original strings are rotations of each other. This reduction
yields a linear time algorithm for our problem.

Usually, you try to reduce the given problem to an easier problem. Sometimes,
however, you need to reduce a problem known to be difficult to the given prob-
lem. This shows that the given problem is difficult, which justifies heuristics and
approximate solutions.

Graph modeling

Drawing pictures is a great way to brainstorm for a potential solution. If the relation-
ships in a given problem can be represented using a graph, quite often the problem
can be reduced to a well-known graph problem. For example, suppose you are given
a set of exchange rates among currencies and you want to determine if an arbitrage
exists, i.e., there is a way by which you can start with one unit of some currency C
and perform a series of barters which results in having more than one unit of C.
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Table 4.4 shows a representative example. An arbitrage is possible for this
set of exchange rates: 1 USD → 1 × 0.8123 = 0.8123 EUR → 0.8123 × 1.2010 =

0.9755723 CHF→ 0.9755723 × 80.39 = 78.426257197 JPY→ 78.426257197 × 0.0128 =

1.00385609212 USD.

Table 4.4: Exchange rates for seven major currencies.

Symbol USD EUR GBP JPY CHF CAD AUD

USD 1 0.8148 0.6404 78.125 0.9784 0.9924 0.9465
EUR 1.2275 1 0.7860 96.55 1.2010 1.2182 1.1616
GBP 1.5617 1.2724 1 122.83 1.5280 1.5498 1.4778
JPY 0.0128 0.0104 0.0081 1 1.2442 0.0126 0.0120
CHF 1.0219 0.8327 0.6546 80.39 1 1.0142 0.9672
CAD 1.0076 0.8206 0.6453 79.26 0.9859 1 0.9535
AUD 1.0567 0.8609 0.6767 83.12 1.0339 1.0487 1

We can model the problem with a graph where currencies correspond to vertices,
exchanges correspond to edges, and the edge weight is set to the logarithm of the
exchange rate. If we can find a cycle in the graph with a positive weight, we
would have found such a series of exchanges. Such a cycle can be solved using the
Bellman-Ford algorithm. The solutions to the problems of painting a Boolean matrix
(Problem 19.2 on Page 90) and string transformation (Problem 19.3 on Page 90) also
illustrate modeling with graphs.

System design patterns

Sometimes, you will be asked how to go about creating a set of services or a larger
system on top of an algorithm that you have designed. We summarize patterns that
are useful for designing systems in Table 4.5.

Table 4.5: System design patterns.

Design principle Key points
Decomposition Split the functionality, architecture, and code into man-

ageable, reusable components.
Parallelism Decompose the problem into subproblems that can be

solved independently on different machines.
Caching Store computation and later look it up to save work.

Decomposition

Good decompositions are critical to successfully solving system-level design prob-
lems. Functionality, architecture, and code all benefit from decomposition.

For example, in our solution to designing a system for online advertising, we
decompose the goals into categories based on the stake holders. We decompose the
architecture itself into a front-end and a back-end. The front-end is divided into user
management, web page design, reporting functionality, etc. The back-end is made
up of middleware, storage, database, cron services, and algorithms for ranking ads.
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Decomposing code is a hallmark of object-oriented programming. The subject of
design patterns is concerned with finding good ways to achieve code-reuse. Broadly
speaking, design patterns are grouped into creational, structural, and behavioral pat-
terns. Many specific patterns are very natural—strategy objects, adapters, builders,
etc., appear in a number of places in our codebase. Freeman et al.’s “Head First Design
Patterns” is, in our opinion, the right place to study design patterns.

Parallelism

In the context of interview questions parallelism is useful when dealing with scale,
i.e., when the problem is too large to fit on a single machine or would take an
unacceptably long time on a single machine. The key insight you need to display is
that you know how to decompose the problem so that
− each subproblem can be solved relatively independently, and
− the solution to the original problem can be efficiently constructed from solutions

to the subproblems.
Efficiency is typically measured in terms of central processing unit (CPU) time, ran-
dom access memory (RAM), network bandwidth, number of memory and database
accesses, etc.

Consider the problem of sorting a petascale integer array. If we know the distri-
bution of the numbers, the best approach would be to define equal-sized ranges of
integers and send one range to one machine for sorting. The sorted numbers would
just need to be concatenated in the correct order. If the distribution is not known
then we can send equal-sized arbitrary subsets to each machine and then merge the
sorted results, e.g., using a min-heap.

The solution to Problem 21.1 on Page 96 also illustrates the use of parallelism.

Caching

Caching is a great tool whenever computations are repeated. For example, the central
idea behind dynamic programming is caching results from intermediate computa-
tions. Caching is also extremely useful when implementing a service that is expected
to respond to many requests over time, and many requests are repeated. Workloads
on web services exhibit this property.

Complexity Analysis

The run time of an algorithm depends on the size of its input. One common approach
to capture the run time dependency is by expressing asymptotic bounds on the worst-
case run time as a function of the input size.

Specifically, the run time of an algorithm on an input of size n is O
(

f (n)
)

if, for
sufficiently large n, the run time is not more than f (n) times a constant. The big-O
notation indicates an upper bound on running time.

As an example, searching an unsorted array of integers of length n, for a given
integer, has an asymptotic complexity ofO(n) since in the worst-case, the given integer
may not be present. Similarly, consider the naïve algorithm for testing primality that
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tries all numbers from 2 to the square root of the input number n. What is its
complexity? In the best case, n is divisible by 2. However, in the worst-case, the
input may be a prime, so the algorithm performs

√
n iterations. Furthermore, since

the number n requires lg n bits to encode, this algorithm’s complexity is actually
exponential in the size of the input.

If the run time is asymptotically proportional to f (n), the time complexity is written
as Θ

(
f (n)

)
. The big-Omega notation, Ω( f (n)), is used to denote an asymptotic lower

bound of f (n) on the time complexity of an algorithm. The big-Omega notation is
illustrated by the Ω(n log n) lower bound on any comparison-based array sorting
algorithm. We follow the widespread custom of using the big-O notation where Θ

or Ω would be more appropriate.
Generally speaking, if an algorithm has a run time that is a polynomial, i.e., O(nk)

for some fixed k, where n is the size of the input, it is considered to be efficient;
otherwise it is inefficient. Notable exceptions exist—for example, the simplex algo-
rithm for linear programming is not polynomial but works very well in practice. On
the other hand, the AKS primality testing algorithm has polynomial run time but
the degree of the polynomial is too high for it to be competitive with randomized
algorithms for primality testing.

Complexity theory is applied in a similar manner when analyzing the space
requirements of an algorithm. Usually, the space needed to read in an instance is not
included; otherwise, every algorithm would have O(n) space complexity.

Several of our problems call for an algorithm that uses O(1) space. Conceptually,
the memory used by such an algorithm should not depend on the size of the input
instance. Specifically, it should be possible to implement the algorithm without
dynamic memory allocation (explicitly, or indirectly, e.g., through library routines).
Furthermore, the maximum depth of the function call stack should also be a constant,
independent of the input. The standard algorithm for depth-first search of a graph is
an example of an algorithm that does not perform any dynamic allocation, but uses
the function call stack for implicit storage—its space complexity is not O(1).

A streaming algorithm is one in which the input is presented as a sequence of
items and is examined in only a few passes (typically just one). These algorithms
have limited memory available to them (much less than the input size) and also
limited processing time per item. Algorithms for computing summary statistics on
log file data often fall into this category.

As a rule, algorithms should be designed with the goal of reducing the worst-case
complexity rather than average-case complexity for several reasons:
− It is very difficult to define meaningful distributions on the inputs.
− Pathological inputs are more likely than statistical models may predict. A

worst-case input for a naïve implementation of quicksort is one where all
entries are the same, which is not unlikely in a practical setting.

− Malicious users may exploit bad worst-case performance to create denial-of-
service attacks.

Many authors, ourselves included, will refer to the time complexity of an al-
gorithm as its complexity without the time qualification. The space complexity is
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always qualified as such.

Intractability

In real-world settings you will often encounter problems that can be solved using
efficient algorithms such as binary search and shortest paths. As we will see in the
coming chapters, it is often difficult to identify such problems because the algorithmic
core is obscured by details. Sometimes, you may encounter problems which can be
transformed into equivalent problems that have an efficient textbook algorithm, or
problems that can be solved efficiently using meta-algorithms such as DP.

Occasionally, the problem you are given is intractable—i.e., there may not exist
an efficient algorithm for the problem. Complexity theory addresses these problems.
Some have been proved to not have an efficient solution (such as checking the validity
of a certain class of formulas expressing relationships involving ∃,+, <,⇒ on the
integers) but the vast majority are only conjectured to be intractable. The conjunctive
normal form satisfiability (CNF-SAT) problem is an example of a problem that is
conjectured to be intractable. Specifically, the CNF-SAT problem belongs to the
complexity class NP—problems for which a candidate solution can be efficiently
checked—and is conjectured to be the hardest problem in this class.

When faced with a problem P that appears to be intractable, the first thing to do is
to prove intractability. This is usually done by taking a problem which is known to be
intractable and showing how it can be efficiently reduced to P. Often this reduction
gives insight into the cause of intractability.

Unless you are a complexity theorist, proving a problem to be intractable is only
the starting point. Remember something is a problem only if it has a solution. There
are a number of approaches to solving intractable problems:
− brute-force solutions, including dynamic programming, which have exponen-

tial time complexity, may be acceptable, if the instances encountered are small,
or if the specific parameter that the complexity is exponential in is small;

− search algorithms, such as backtracking, branch-and-bound, and hill-climbing,
which prune much of the complexity of a brute-force search;

− approximation algorithms which return a solution that is provably close to
optimum;

− heuristics based on insight, common case analysis, and careful tuning that may
solve the problem reasonably well;

− parallel algorithms, wherein a large number of computers can work on subparts
simultaneously.

Don’t forget it may be possible to dramatically change the problem formulation
while still achieving the higher level goal, as illustrated in Figure 4.4 on the next
page.
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Figure 4.4: P = NP, by XKCD.
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5
Primitive Types

Representation is the essence of programming.

— “The Mythical Man Month,”
F. P. Brooks, 1975

A program updates variables in memory according to its instructions. The variables
are classified according to their type—a type is a classification of data that spells out
possible values for that type and the operations that can be performed on it.

Types can be primitive, i.e., provided by the language, or defined by the pro-
grammer. The set of primitive types depends on the language. For example, the
primitive types in C++ are bool, char, short, int, long, float, and double, and in
Java are boolean, char, byte, short, int, long, float, and double. A programmer
can define a complex number type as a pair of doubles, one for the real and one for
the imaginary part. The width of a primitive-type variable is the number of bits of
storage it takes in memory. For example, most implementations of C++ use 32 or 64
bits for an int. In Java an int is always 32 bits.

Problems involving manipulation of bit-level data are often asked in interviews.
An old question goes as follows. Given two integer-valued variables a and b, the
straightforward way of swapping their contents is to use a temporary variable—temp

= a; a = b; b = temp;. The question is: can you swap without using an additional
variable? Surprisingly it is possible—a = a ^ b; b = a ^ b; a = a ^ b;, where
^ is the binary bitwise-XOR operator, does the trick. The same code can be expressed
more tersely as a ^= b ^= a ^= b;.

It is easy to introduce errors in code that manipulates bit-level data—when you
play with bits, expect to get bitten.

5.1 Compute parity

The parity of a sequence of bits is 1 if the number of 1s in the sequence is odd;
otherwise, it is 0. Parity checks are used to detect single bit errors in data storage and
communication. It is fairly straightforward to write code that computes the parity of
a single 64-bit nonnegative integer.

Problem 5.1 : How would you go about computing the parity of a very large number
of 64-bit nonnegative integers? pg. 104
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5.2 Compute x/y

Problem 5.2 : Given two positive integers x and y, how would you compute x/y if
the only operators you can use are addition, subtraction, and shifting? pg. 105

5.3 Convert base

In the decimal system, the position of a digit is used to signify the power of 10 that
digit is to be multiplied with. For example, “314” denotes the number 3 × 100 + 1 ×
10 + 4 × 1. (Note that zero, which is not needed in other systems, is essential in the
decimal system, since a zero can be used to skip a power.)

The decimal system is an example of a positional number system, wherein the
same symbol is used for different orders of magnitude (for example, the “ones place”,
“tens place”, “hundreds place”). This system greatly simplified arithmetic and led
to its widespread adoption.

The base b number system generalizes the above: the string “ak−1ak−2 . . . a1a0”,
where 0 ≤ ai < b, for each i ∈ [0, k − 1] denotes the integer

∑k−1
i=0 aibi.

Problem 5.3 : Write a function that performs base conversion. Specifically, the input
is an integer base b1, a string s, representing an integer x in base b1, and another
integer base b2; the output is the string representing the integer x in base b2. Assume
2 ≤ b1, b2 ≤ 16. Use “A” to represent 10, “B” for 11, . . . , and “F” for 15. pg. 106

5.4 Generate uniform random numbers

This problem is motivated by the following. Five friends have to select a designated
driver using a single unbiased coin. The process should be fair to everyone.

Problem 5.4 : How would you implement a random number generator that gener-
ates a random integer i in [a, b], given a random number generator that produces
either zero or one with equal probability? All generated values should have equal
probability. What is the run time of your algorithm? pg. 107

5.5 The open doors problem

Five hundred closed doors along a corridor are numbered from 1 to 500. A person
walks through the corridor and opens each door. Another person walks through the
corridor and closes every alternate door. Continuing in this manner, the i-th person
comes and toggles the position of every i-th door starting from door i.

Problem 5.5 : Which doors are open after the 500-th person has walked through?
pg. 108

5.6 Compute the greatest common divisor

The greatest common divisor (GCD) of positive integers x and y is the largest integer
d such that d | x and d | y, where a | b denotes a divides b, i.e., b mod a = 0.
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Problem 5.6 : Design an efficient algorithm for computing the GCD of two numbers
without using multiplication, division or the modulus operators. pg. 108
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Arrays

The machine can alter the scanned symbol and its behavior
is in part determined by that symbol, but the symbols on the
tape elsewhere do not affect the behavior of the machine.

— “Intelligent Machinery,”
A. M. Turing, 1948

Arrays

The simplest data structure is the array, which is a contiguous block of memory.
Given an array A which holds n objects, A[i] denotes the (i + 1)-th object stored in the
array. Retrieving and updating A[i] takesO(1) time. However, the size of the array is
fixed, which makes adding more than n objects impossible. Deletion of the object at
location i can be handled by having an auxiliary Boolean associated with the location
i indicating whether the entry is valid.

Insertion of an object into a full array can be handled by allocating a new array
with additional memory and copying over the entries from the original array. This
makes the worst-case time of insertion high but if the new array has, for example,
twice the space of the original array, the average time for insertion is constant since
the expense of copying the array is infrequent. This concept is formalized using
amortized analysis.

6.1 The Dutch national flag problem

The quicksort algorithm for sorting arrays proceeds recursively—it selects an element
x (the “pivot”), reorders the array to make all the elements less than or equal to x
appear first, followed by all the elements greater than x. The two subarrays are then
sorted recursively.

Implemented naïvely, this approach leads to large run times on arrays with many
duplicates. One solution is to reorder the array so that all elements less than x appear
first, followed by elements equal to x, followed by elements greater than x. This is
known as Dutch national flag partitioning, because the Dutch national flag consists
of three horizontal bands, each in a different color. Assuming that black precedes
white and white precedes gray, Figure 6.1(b) on the facing page is a valid partitioning
for Figure 6.1(a) on the next page. If gray precedes black and black precedes white,
Figure 6.1(c) on the facing page is a valid partitioning for Figure 6.1(a) on the next
page.

46



6.2. Compute the max difference 47

When an array consists of entries from a small set of keys, e.g., {0, 1, 2}, one way
to sort it is to count the number of occurrences of each key. Consequently, enumerate
the keys in sorted order and write the corresponding number of keys to the array. If
a BST is used for counting, the time complexity of this approach is O(n log k), where
n is the array length and k is the number of keys. This is known as counting sort.
Counting sort, as just described, does not differentiate among different objects with
the same key value. This problem is concerned with a special case of counting sort
when entries are objects rather than keys.

(a) Before partitioning. (b) A three-way partitioning resem-
bling the Dutch national flag.

(c) Another three-way partitioning:
the Russian national flag.

Figure 6.1: Illustrating the Dutch national flag problem.

Problem 6.1 : Write a function that takes an array A of length n and an index i into
A, and rearranges the elements such that all elements less than A[i] appear first,
followed by elements equal to A[i], followed by elements greater than A[i]. Your
algorithm should have O(1) space complexity and O(n) time complexity. pg. 109

6.2 Compute the max difference

The problem of computing the maximum difference in an array, specifically
maxi> j(A[i] − A[ j]) arises in a number of contexts. We introduced this problem
in the context of historical stock quote information on Page 1. Here we study another
application of the same problem.

A robot needs to travel along a path that includes several ascents and descents.
When it goes up, it uses its battery to power the motor and when it descends, it
recovers the energy which is stored in the battery. The battery recharging process
is ideal: on descending, every Joule of gravitational potential energy converts to a
Joule of electrical energy which is stored in the battery. The battery has a limited
capacity and once it reaches this capacity, the energy generated in descending is lost.

Problem 6.2 : Design an algorithm that takes a sequence of n three-dimensional
coordinates to be traversed, and returns the minimum battery capacity needed to
complete the journey. The robot begins with a fully charged battery. pg. 110

6.3 Solve generalizations of max difference

Problem 6.2, which is concerned with computing max0≤i< j≤n−1(A[ j]−A[i]), generalizes
naturally to the following three problems.
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Problem 6.3 : For each of the following, A is an integer array of length n.
(1.) Compute the maximum value of (A[ j0] − A[i0]) + (A[ j1] − A[i1]), subject to

i0 < j0 < i1 < j1.
(2.) Compute the maximum value of

∑k−1
t=0 (A[ jt]−A[it]), subject to i0 < j0 < i1 < j1 <

· · · < ik−1 < jk−1. Here k is a fixed input parameter.
(3.) Repeat Problem (2.) when k can be chosen to be any value from 0 to bn/2c.

pg. 111

6.4 Sample offline data

Problem 6.4 : Let A be an array of n distinct elements. Design an algorithm that
returns a subset of k elements of A. All subsets should be equally likely. Use as few
calls to the random number generator as possible and use O(1) additional storage.
You can return the result in the same array as input. pg. 113

6.5 Sample online data

This problem is motivated by the design of a packet sniffer that provides a uniform
sample of packets for a network session.

Problem 6.5 : Design an algorithm that reads a sequence of packets and maintains a
uniform random subset of size k of the read packets when the n ≥ k-th packet is read.

pg. 114

Multidimensional arrays

Thus far we have focused our attention in this chapter on one-dimensional arrays. We
now turn our attention to multidimensional arrays. A 2D array in an array whose
entries are themselves arrays; the concept generalizes naturally to k dimensional
arrays.

Multidimensional arrays arise in image processing, board games, graphs, mod-
eling spatial phenomenon, etc. Often, but not always, the arrays that constitute the
entries of a 2D array A have the same length, in which case we refer to A as being an
m× n rectangular array (or sometimes just an m× n array), where m is the number of
entries in A, and n the number of entries in A[0]. The elements within a 2D array A
are often referred to by their row and column indices i and j, and written as A[i][ j] or
A[i, j].
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Strings

String pattern matching is an important problem that occurs in
many areas of science and information processing. In computing,
it occurs naturally as part of data processing, text editing, term
rewriting, lexical analysis, and information retrieval.

— “Algorithms For Finding Patterns in Strings,”
A. V. Aho, 1990

Strings

Strings are ubiquitous in programming today—scripting, web development, and
bioinformatics all make extensive use of strings. You should know how strings are
represented in memory, and understand basic operations on strings such as com-
parison, copying, joining, splitting, matching, etc. We now present problems on
strings which can be solved using elementary techniques. Advanced string pro-
cessing algorithms often use hash tables (Chapter 13) and dynamic programming
(Page 79).

7.1 Interconvert strings and integers

A string is a sequence of characters. A string may encode an integer, e.g., “123”
encodes 123. In this problem, you are to implement methods that take a string
representing an integer and return the corresponding integer, and vice versa.

Your code should handle negative integers. It should throw an exception if the
string does not encode an integer, e.g., “123abc” is not a valid encoding.

Languages such as C++ and Java have library functions for performing this
conversion—stoi in C++ and parseInt in Java go from strings to integers;
to_string in C++ and toString in Java go from integers to strings. You cannot
use these functions. (Imagine you are implementing the corresponding library.)

Problem 7.1 : Implement string/integer inter-conversion functions. Use
the following function signatures: String intToString(int x) and int

stringToInt(String s). pg. 115

7.2 Reverse all the words in a sentence

Given a string containing a set of words separated by white space, we would like to
transform it to a string in which the words appear in the reverse order. For example,
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“Alice likes Bob” transforms to “Bob likes Alice”. We do not need to keep the original
string.

Problem 7.2 : Implement a function for reversing the words in a string s. Your
function should use O(1) space. pg. 116

7.3 Compute all mnemonics for a phone number

Each digit, apart from 0 and 1, in a phone keypad corresponds to one of three
or four letters of the alphabet, as shown in Figure 7.1. Since words are easier to
remember than numbers, it is natural to ask if a 7 or 10-digit phone number can be
represented by a word. For example, “2276696” corresponds to “ACRONYM” as
well as “ABPOMZN”.

1
ABC

2
DEF

3
GHI

4
JKL

5
MNO

6
PQRS

7
TUV

8
WXYZ

9

* 0 #

Figure 7.1: Phone keypad.

Problem 7.3 : Write a function which takes as input a phone number, specified as a
string of digits, return all possible character sequences that correspond to the phone
number. The cell phone keypad is specified by a mapping M that takes a digit and
returns the corresponding set of characters. The character sequences do not have to
be legal words or phrases. pg. 117
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Linked Lists

The S-expressions are formed according to the following re-
cursive rules.

1. The atomic symbols p1, p2, etc., are S-expressions.

2. A null expression ∧ is also admitted.

3. If e is an S-expression so is (e).

4. If e1 and e2 are S-expressions so is (e1, e2).

— “Recursive Functions Of Symbolic Expressions,”
J. McCarthy, 1959

A singly linked list is a data structure that contains a sequence of nodes such that each
node contains an object and a reference to the next node in the list. The first node is
referred to as the head and the last node is referred to as the tail; the tail’s next field is
a reference to null. The structure of a singly linked list is given in Figure 8.1. There
are many variants of linked lists, e.g., in a doubly linked list, each node has a link to
its predecessor; similarly, a sentinel node or a self-loop can be used instead of null.
The structure of a doubly linked list is given in Figure 8.2. Since lists can be defined
recursively, recursion is a natural candidate for list manipulation.

L 2

0x1354

3

0x1200

5

0x2200

3

0x1000

2

0x2110

Figure 8.1: Example of a singly linked list. The number in hex below a node indicates the memory
address of that node.

L 2 3 5 3 2

Figure 8.2: Example of a doubly linked list.

For all problems in this chapter, unless otherwise stated, L is a singly linked list,
and your solution may not use more than a few words of storage, regardless of the
length of the list. Specifically, each node has two entries—a data field, and a next

field, which points to the next node in the list, with the next field of the last node
being null. Its prototype in C++ is listed as follows:

1 template <typename T>
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52 8.1. Merge two sorted lists

2 struct ListNode {

3 T data;

4 shared_ptr <ListNode<T>> next;

5 };

8.1 Merge two sorted lists

Let L and F be singly linked lists in which each node holds a number. Assume the
numbers in L and F appear in ascending order within the lists. The merge of L and
F is a list consisting of the nodes of L and F in which numbers appear in ascending
order. The merge function is shown in Figure 8.3.

L 2
0x1000

5
0x1240

7
0x1830

F 3
0x2430

11
0x2700

(a) Two sorted lists.

M 2
0x1000

3
0x2430

5
0x1240

7
0x1830

11
0x2700

(b) The merge of the two lists in (a).

Figure 8.3: Merging sorted lists.

Problem 8.1 : Write a function that takes L and F, and returns the merge of L and
F. Your code should use O(1) additional storage—it should reuse the nodes from
the lists provided as input. Your function should use O(1) additional storage, as
illustrated in Figure 8.3. The only field you can change in a node is next. pg. 117

8.2 Reverse a singly linked list

Suppose you were given a singly linked list L of integers sorted in ascending order
and you need to return a list with the elements sorted in descending order. Memory
is scarce, but you can reuse nodes in the original list, i.e., your function can change L.

Problem 8.2 : Give a linear time nonrecursive function that reverses a singly linked
list. The function should use no more than constant storage beyond that needed for
the list itself. pg. 118

8.3 Test for cyclicity

Although a linked list is supposed to be a sequence of nodes ending in a null, it
is possible to create a cycle in a linked list by making the next field of an element
reference to one of the earlier nodes.

Problem 8.3 : Given a reference to the head of a singly linked list L, how would you
determine whether L ends in a null or reaches a cycle of nodes? Write a function
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8.4. Copy a postings list 53

that returns null if there does not exist a cycle, and the reference to the start of the
cycle if a cycle is present. (You do not know the length of the list in advance.) pg. 119

8.4 Copy a postings list

In a “postings list” each node has a data field, a field for the next pointer, and a jump
field—the jump field points to any other node. The last node in the postings list has
next set to null; all other nodes have non-null next and jump fields. For example,
Figure 8.4 is a postings list with four nodes.

L a b c d

Figure 8.4: A postings list.

Problem 8.4 : Implement a function which takes as input a pointer to the head of a
postings list L, and returns a copy of the postings list. Your function should takeO(n)
time, where n is the length of the postings list and should use O(1) storage beyond
that required for the n nodes in the copy. You can modify the original list, but must
restore it to its initial state before returning. pg. 121
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Chapter

9
Stacks and Queues

Linear lists in which insertions, deletions, and accesses
to values occur almost always at the first or the last
node are very frequently encountered, and we give
them special names . . .

— “The Art of Computer Programming, Volume 1,”
D. E. Knuth, 1997

Stacks

The stack ADT supports two basic operations—push and pop. Elements are added
(pushed) and removed (popped) in last-in, first-out order, as shown in Figure 9.1. If
the stack is empty, pop typically returns a null or throws an exception.

When the stack is implemented using a linked list these operations have O(1)
time complexity. If it is implemented using an array, there is maximum number of
entries it can have—push and pop are still O(1). If the array is dynamically resized,
the amortized time for both push and pop is O(1). A stack can support additional
operations such as peek (return the top of the stack without popping it).

2

1

4

(a) Initial configuration.

pop

2

1

(b) Perform pop on (a).

push 3

2

1

3

(c) Perform push 3 on (b).

Figure 9.1: Operations on a stack.

9.1 Implement a stack with max API

Problem 9.1 : Design a stack that supports a max operation, which returns the maxi-
mum value stored in the stack, and throws an exception if the stack is empty. Assume
elements are comparable. All operations must be O(1) time. If the stack contains n
elements, you can use O(n) space, in addition to what is required for the elements
themselves. pg. 123
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9.2. Print a binary tree in order of increasing depth 55

Queues

The queue ADT supports two basic operations—enqueue and dequeue. (If the queue
is empty, dequeue typically returns a null or throws an exception.) Elements are
added (enqueued) and removed (dequeued) in first-in, first-out order.

A queue can be implemented using a linked list, in which case these operations
have O(1) time complexity. Other operations can be added, such as head (which
returns the item at the start of the queue without removing it), and tail (which
returns the item at the end of the queue without removing it). A queue can also be
implemented using an array; see Problem 9.3 for details.

3 2 0

(a) Initial configuration.

2 0
dequeue

(b) Queue (a) after dequeue.

2 0 4 enqueue 4

(c) Queue (b) after enqueue(4).

Figure 9.2: Examples of enqueue and dequeue.

A deque, also sometimes called a double-ended queue, is a doubly linked list in
which all insertions and deletions are from one of the two ends of the list, i.e., at the
head or the tail. An insertion to the front is called a push, and an insertion to the back
is called an inject. A deletion from the front is called a pop, and a deletion from the
back is called an eject.

9.2 Print a binary tree in order of increasing depth

Binary trees are formally defined in Chapter 10. In particular, each node in a binary
tree has a depth, which is its distance from the root.

Problem 9.2 : Given the root node r of a binary tree, print all the keys at r and its
descendants. The keys should be printed in the order of the corresponding nodes’
depths. Specifically, all keys corresponding to nodes of depth d should appear in a
single line, and the next line should correspond to keys corresponding to nodes of
depth d + 1. You cannot use recursion. You may use a single queue, and constant
additional storage. For example, you should print
314

6 6

271 561 2 271

28 0 3 1 28

17 401 257

641

for the binary tree in Figure 10.1 on Page 57. pg. 126

9.3 Implement a circular queue

A queue can be implemented using an array and two additional fields, the beginning
and the end indices. This structure is sometimes referred to as a circular queue.
Both enqueue and dequeue have O(1) time complexity. If the array is fixed, there is a
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56 9.3. Implement a circular queue

maximum number of entries that can be stored. If the array is dynamically resized,
the total time for m combined enqueue and dequeue operations is O(m).

Problem 9.3 : Implement a queue API using an array for storing elements. Your API
should include a constructor function, which takes as argument the capacity of the
queue, enqueue and dequeue functions, a size function, which returns the number
of elements stored, and implement dynamic resizing. pg. 127
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Chapter

10
Binary Trees

The method of solution involves the development of a theory of finite
automata operating on infinite trees.

— “Decidability of Second Order Theories and Automata on Trees,”
M. O. Rabin, 1969

A binary tree is a data structure that is useful for representing hierarchy. Formally,
a binary tree is a finite set of nodes T that is either empty, or consists of a root node
r together with two disjoint subsets L and R themselves binary trees whose union
with {r} equals T. The set L is called the left binary tree and R is the right binary tree of
T. The left binary tree is referred to as the left child or the left subtree of the root, and
the right binary tree is referred to as the right child or the right subtree of the root.

Figure 10.1 gives a graphical representation of a binary tree. Node A is the root.
Nodes B and I are the left and right children of A.

314

6

271

28

2

1

257401

641

6

561

3

17

271

028

A

B

C

D

H

J

L

P

I

F O

E K

N

G

M

height = 5

depth 0

depth 1

depth 2

depth 3

depth 4

depth 5

Figure 10.1: Example of a binary tree. The node depths range from 0 to 5. Node M has the highest
depth (5) of any node in the tree, implying the height of the tree is 5.

Often the root stores additional data. Its prototype in C++ is listed as follows:

1 template <typename T>

2 struct BinaryTreeNode {

3 T data;

4 unique_ptr <BinaryTreeNode <T>> left, right;

5 };
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58 Binary Trees

Each node, except the root, is itself the root of a left subtree or a right subtree. If
l is the root of p’s left subtree, we will say l is the left child of p, and p is the parent of
l; the notion of right child is similar. If n is a left or a right child of p, we say it is a
child of p. Note that with the exception of the root, every node has a unique parent.
Usually, but not universally, the node object definition includes a parent field (which
is null for the root). Observe that for any node n there exists a unique sequence of
nodes from the root to n with each subsequent node being a child of the previous
node. This sequence is sometimes referred to as the search path from the root to n.

The parent-child relationship defines an ancestor-descendant relationship on
nodes in a binary tree. Specifically, a is an ancestor of d if a lies on the search path from
the root to d. If a is an ancestor of d, we say d is a descendant of a. Our convention is
that x is an ancestor and descendant of itself. A node that has no descendants except
for itself is called a leaf.

The depth of a node n is the number of nodes on the search path from the root to n,
not including n itself. The height of a binary tree is the maximum depth of any node
in that tree. A level of a tree is all nodes at the same depth. See Figure 10.1 on the
preceding page for an example of the depth and height concepts.

As concrete examples of these concepts, consider the binary tree in Figure 10.1 on
the previous page. Node I is the parent of J and O. Node G is a descendant of B. The
search path to L is 〈A, I, J,K,L〉. The depth of N is 4. Node M is the node of maximum
depth, and hence the height of the tree is 5. The height of the subtree rooted at B is 3.
The height of the subtree rooted at H is 0. Nodes D,E,H,M,N, and P are the leaves
of the tree.

A full binary tree is a binary tree in which every node other than the leaves has two
children. A perfect binary tree is a full binary tree in which all leaves are at the same
depth, and in which every parent has two children. A complete binary tree is a binary
tree in which every level, except possibly the last, is completely filled, and all nodes
are as far left as possible. (This terminology is not universal, e.g., some authors use
complete binary tree where we write perfect binary tree.) It is straightforward to
prove using induction that the number of nonleaf nodes in a full binary tree is one
less than the number of leaves. A perfect binary tree of height h contains exactly
2h+1
− 1 nodes, of which 2h are leaves. A complete binary tree on n nodes has height

blg nc.
A key computation on a binary tree is traversing all the nodes in the tree. (Travers-

ing is also sometimes called walking.) Here are some ways in which this visit can be
done.
− Traverse the left subtree, visit the root, then traverse the right subtree

(an inorder traversal). An inorder traversal of the binary tree in Fig-
ure 10.1 on the preceding page visits the nodes in the following order:
〈D,C,E,B,F,H,G,A, J,L,M,K,N, I,O,P〉.

− Visit the root, traverse the left subtree, then traverse the right subtree
(a preorder traversal). A preorder traversal of the binary tree in Fig-
ure 10.1 on the previous page visits the nodes in the following order:
〈A,B,C,D,E,F,G,H, I, J,K,L,M,N,O,P〉.
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10.1. Test if a binary tree is balanced 59

− Traverse the left subtree, traverse the right subtree, and then visit the
root (a postorder traversal). A postorder traversal of the binary tree
in Figure 10.1 on Page 57 visits the nodes in the following order:
〈D,E,C,H,G,F,B,M,L,N,K, J,P,O, I,A〉.

Let T be a binary tree on n nodes, with height h. Implemented recursively, these
traversals have O(n) time complexity and O(h) additional space complexity. (The
space complexity is dictated by the maximum depth of the function call stack.) If
each node has a parent field, the traversals can be done with O(1) additional space
complexity.

Remarkably, an inorder traversal can be implemented in O(1) additional space
even without parent fields. The approach is based on temporarily setting right child
fields for leaf nodes, and later undoing these changes. Code for this algorithm, known
as a Morris traversal, is given below. It is largely of theoretical interest; one major
shortcoming is that it is not thread-safe, since it mutates the tree, albeit temporarily.

1 void inorder_traversal(const unique_ptr <BinaryTreeNode <int>>& root) {

2 auto* n = root.get();

3 while (n) {

4 if (n->left.get()) {

5 // Finds the predecessor of n.

6 auto* pre = n->left.get();

7 while (pre->right.get() && pre->right.get() != n) {

8 pre = pre->right.get();

9 }

10

11 // Processes the successor link.

12 if (pre->right.get()) { // pre->right.get() == n.

13 // Reverts the successor link if predecessor’s successor is n.

14 pre->right.release();

15 cout << n->data << endl;

16 n = n->right.get();

17 } else { // if predecessor’s successor is not n.

18 pre->right.reset(n);

19 n = n->left.get();

20 }

21 } else {

22 cout << n->data << endl;

23 n = n->right.get();

24 }

25 }

26 }

The term tree is overloaded, which can lead to confusion; see Page 89 for an
overview of the common variants.

10.1 Test if a binary tree is balanced

A binary tree is said to be balanced if for each node in the tree, the difference in the
height of its left and right subtrees is at most one. A perfect binary tree is balanced,
as is a complete binary tree. A balanced binary tree does not have to be perfect or
complete—see Figure 10.2 on the following page for an example.
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60 10.2. Compute the LCA in a binary tree

A

B

C

D

E

G

H

I J

L

F

O

K

NM

Figure 10.2: A balanced binary tree of height 4.

Problem 10.1 : Write a function that takes as input the root of a binary tree and
returns true or falsedepending on whether the tree is balanced. UseO(h) additional
storage, where h is the height of the tree. pg. 128

10.2 Compute the LCA in a binary tree

Any two nodes in a binary tree have a common ancestor, namely the root. The lowest
common ancestor (LCA) of any two nodes in a binary tree is the node furthest from
the root that is an ancestor of both nodes. For example, the LCA of M and N in
Figure 10.1 on Page 57 is K.

Problem 10.2 : Design an efficient algorithm for computing the LCA of nodes a and
b in a binary tree in which nodes do not have a parent pointer. pg. 129

10.3 Implement an inorder traversal with O(1) space

The direct implementation of an inorder traversal using recursion has O(h) space
complexity, where h is the height of the tree. Recursion can be removed with an
explicit stack, but the space complexity remains O(h). If the tree is mutable, we
can do inorder traversal in O(1) space—this is the Morris traversal described on the
preceding page. The Morris traversal does not require that nodes have parent fields.

Problem 10.3 : Let T be the root of a binary tree in which nodes have an explicit
parent field. Design an iterative algorithm that enumerates the nodes inorder and
uses O(1) additional space. Your algorithm cannot modify the tree. pg. 130

10.4 Compute the successor

The successor of a node n in a binary tree is the node s that appears immediately
after n in an inorder traversal. For example, in Figure 10.1 on Page 57, the successor
of Node G is Node A, and the successor of Node A is Node J.
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10.4. Compute the successor 61

Problem 10.4 : Design an algorithm that takes a node n in a binary tree, and returns
its successor. Assume that each node has a parent field; the parent field of root is
null. pg. 131
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Chapter

11
Heaps

Using F-heaps we are able to obtain improved running
times for several network optimization algorithms.

— “Fibonacci heaps and their uses,”
M. L. Fredman and R. E. Tarjan, 1987

A heap is a specialized binary tree, specifically it is a complete binary tree. It supports
O(log n) insertions, O(1) time lookup for the max element, and O(log n) deletion of
the max element. The extract-max operation is defined to delete and return the
maximum element. (The min-heap is a completely symmetric version of the data
structure and supports O(1) time lookups for the minimum element.)

A max-heap can be implemented as an array; the children of the node at index i
are at indices 2i + 1 and 2i + 2. Searching for arbitrary keys has O(n) time complexity.
Anything that can be done with a heap can be done with a balanced BST with the
same or better time and space complexity but with possibly some implementation
overhead. There is no relationship between the heap data structure and the portion
of memory in a process by the same name.

11.1 Merge sorted files

You are given 500 files, each containing stock trade information for an S&P 500
company. Each trade is encoded by a line as follows:

1232111,AAPL,30,456.12

The first number is the time of the trade expressed as the number of milliseconds
since the start of the day’s trading. Lines within each file are sorted in increasing
order of time. The remaining values are the stock symbol, number of shares, and
price. You are to create a single file containing all the trades from the 500 files,
sorted in order of increasing trade times. The individual files are of the order of
5–100 megabytes; the combined file will be of the order of five gigabytes.

Problem 11.1 : Design an algorithm that takes a set of files containing stock trades
sorted by increasing trade times, and writes a single file containing the trades ap-
pearing in the individual files sorted in the same order. The algorithm should use
very little RAM, ideally of the order of a few kilobytes. pg. 131
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11.2. Compute the k closest stars 63

11.2 Compute the k closest stars

Consider a coordinate system for the Milky Way, in which the Earth is at (0, 0, 0).
Model stars as points, and assume distances are in light years. The Milky Way
consists of approximately 1012 stars, and their coordinates are stored in a file in
comma-separated values (CSV) format—one line per star and four fields per line, the
first corresponding to an ID, and then three floating point numbers corresponding
to the star location.

Problem 11.2 : How would you compute the k stars which are closest to the Earth?
You have only a few megabytes of RAM. pg. 132

11.3 Compute the median of online data

You want to compute the running median of a sequence of numbers. The sequence
is presented to you in a streaming fashion—you cannot back up to read an earlier
value, and you need to output the median after reading in each new element.

Problem 11.3 : Design an algorithm for computing the running median of a sequence.
The time complexity should be O(log n) per element read in, where n is the number
of values read in up to that element. pg. 134
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Chapter

12
Searching

— “The Anatomy of A Large-Scale Hypertextual Web Search Engine,”
S. M. Brin and L. Page, 1998

Search algorithms can be classified in a number of ways. Is the underlying collection
static or dynamic, i.e., inserts and deletes are interleaved with searching? Is worth
spending the computational cost to preprocess the data so as to speed up subsequent
queries? Are there statistical properties of the data that can be exploited? Should we
operate directly on the data or transform it?

In this chapter, our focus is on static data stored in sorted order in an array. Data
structures appropriate for dynamic updates are the subject of Chapters 11, 13, and15.

The first collection of problems in this chapter are related to binary search. The
second collection pertains to general search.

Binary search

Binary search is at the heart of more interview questions than any other single al-
gorithm. Given an arbitrary collection of n keys, the only way to determine if a
search key is present is by examining each element. This has O(n) time complexity.
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Fundamentally, binary search is a natural elimination-based strategy for searching a
sorted array. The idea is to eliminate half the keys from consideration by keeping the
keys in sorted order. If the search key is not equal to the middle element of the array,
one of the two sets of keys to the left and to the right of the middle element can be
eliminated from further consideration.

Questions based on binary search are ideal from the interviewers perspective: it
is a basic technique that every reasonable candidate is supposed to know and it can
be implemented in a few lines of code. On the other hand, binary search is much
trickier to implement correctly than it appears—you should implement it as well as
write corner case tests to ensure you understand it properly.

Many published implementations are incorrect in subtle and not-so-subtle ways—
a study reported that it is correctly implemented in only five out of twenty textbooks.
Jon Bentley, in his book “Programming Pearls” reported that he assigned binary search
in a course for professional programmers and found that 90% failed to code it cor-
rectly despite having ample time. (Bentley’s students would have been gratified to
know that his own published implementation of binary search, in a column titled
“Writing Correct Programs”, contained a bug that remained undetected for over
twenty years.)

Binary search can be written in many ways—recursive, iterative, different idioms
for conditionals, etc. Here is an iterative implementation adapted from Bentley’s
book, which includes his bug.

1 int bsearch(int t, const vector<int>& A) {

2 int L = 0, U = A.size() - 1;

3 while (L <= U) {

4 int M = (L + U) / 2;

5 if (A[M] < t) {

6 L = M + 1;

7 } else if (A[M] == t) {

8 return M;

9 } else {

10 U = M - 1;

11 }

12 }

13 return -1;

14 }

The error is in the assignment M = (L + U) / 2 in Line 4, which can lead to
overflow. A common solution is to use M = L + (U - L) / 2.

However, even this refinement is problematic in a C-style implementation. The C
Programming Language (2nd ed.) by Kernighan and Ritchie (Page 100) states: “If one is
sure that the elements exist, it is also possible to index backwards in an array; p[-1],
p[-2], etc. are syntactically legal, and refer to the elements that immediately precede
p[0].” In the expression L + (U - L) / 2, if U is a sufficiently large positive integer
and L is a sufficiently large negative integer, (U - L) can overflow, leading to out of
bounds array access. The problem is illustrated below:

1 #define N 3000000000

2 char A[N];
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66 12.1. Search a sorted array for first occurrence of k

3 char* B = (A + 1500000000);

4 int L = -1499000000;

5 int U = 1499000000;

6 // On a 32-bit machine (U - L) = -1296967296 because the actual value,

7 // 2998000000 is larger than 2^31 - 1. Consequently , the bsearch function

8 // called below sets m to -2147483648 instead of 0, which leads to an

9 // out-of-bounds access, since the most negative index that can be applied

10 // to B is -1500000000.

11 int result = binary_search(key, B, L, U);

The solution is to check the signs of L and U. If U is positive and L is negative, M =

(L + U) / 2 is appropriate, otherwise set M = L + (U - L) / 2.
In our solutions that make use of binary search, L and U are nonnegative and so

we use M = L + (U - L) / 2 in the associated programs.
The time complexity of binary search is given by T(n) = T(n/2) + c, where c is a

constant. This solves to T(n) = O(log n), which is far superior to the O(n) approach
needed when the keys are unsorted. A disadvantage of binary search is that it
requires a sorted array and sorting an array takes O(n log n) time. However, if there
are many searches to perform, the time taken to sort is not an issue.

Many variants of searching a sorted array require a little more thinking and create
opportunities for missing corner cases.

12.1 Search a sorted array for first occurrence of k

Binary search commonly asks for the index of any element of a sorted array A that is
equal to a given element. The following problem has a slight twist on this.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

-14 -10 2 108 108 243 285 285 285 401

Figure 12.1: A sorted array with repeated elements.

Problem 12.1 : Write a method that takes a sorted array A and a key k and returns
the index of the first occurrence of k in A. Return −1 if k does not appear in A. For
example, when applied to the array in Figure 12.1 your algorithm should return 3 if
k = 108; if k = 285, your algorithm should return 6. pg. 135

12.2 Search a cyclically sorted array

An array A of length n is said to be cyclically sorted if the smallest element in the
array is at index i, and the sequence 〈A[i],A[i + 1], . . . ,A[n−1],A[0],A[1], . . . ,A[i−1]〉
is sorted in increasing order, as illustrated in Figure 12.2 on the next page.

Problem 12.2 : Design an O(log n) algorithm for finding the position of the smallest
element in a cyclically sorted array. Assume all elements are distinct. For example,
for the array in Figure 12.2 on the facing page, your algorithm should return 4. pg. 135
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12.3. Search in two sorted arrays 67

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

378 478 550 631 103 203 220 234 279 368

Figure 12.2: A cyclically sorted array.

12.3 Search in two sorted arrays

The k-th smallest element in a sorted array A is simply A[k−1] which takesO(1) time
to compute. Suppose you are given two sorted arrays A and B, of length n and m
respectively, and you need to find the k-th smallest element of the array C consisting
of the n + m elements of A and B arranged in sorted order. We’ll refer to this array
as the union of A and B, although strictly speaking union is a set-theoretic operation
that does not have a notion of order, or duplicate elements.

You could merge the two arrays into a third sorted array and then look for the
answer, but the merge would take O(n + m) time. You can build the merged array on
the first k elements, which would be an O(k) operation.

Problem 12.3 : You are given two sorted arrays A and B of lengths m and n, respec-
tively, and a positive integer k ∈ [1,m + n]. Design an algorithm that runs in O(log k)
time for computing the k-th smallest element in array formed by merging A and B.
Array elements may be duplicated within and between A and B. pg. 136

Generalized search

Now we consider a number of search problems that do not use the binary search
principle. For example, they focus on tradeoffs between RAM and computation
time, avoid wasted comparisons when searching for the minimum and maximum
simultaneously, use randomization to perform elimination efficiently, use bit-level
manipulations to identify missing elements, etc.

12.4 Find the missing IP address

The storage capacity of hard drives dwarfs that of RAM. This can lead to interesting
space-time trade-offs.

Problem 12.4 : Suppose you were given a file containing roughly one billion Internet
Protocol (IP) addresses, each of which is a 32-bit unsigned integer. How would
you programmatically find an IP address that is not in the file? Assume you have
unlimited drive space but only two megabytes of RAM at your disposal. pg. 138
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Chapter

13
Hash Tables

The new methods are intended to reduce the amount of space required to contain
the hash-coded information from that associated with conventional methods.
The reduction in space is accomplished by exploiting the possibility that a small
fraction of errors of commission may be tolerable in some applications.

— “Space/time trade-offs in hash coding with allowable errors,”
B. H. Bloom, 1970

The idea underlying a hash table is to store objects according to their key field in an
array. Objects are stored in array locations based on the “hash code” of the key. The
hash code is an integer computed from the key by a hash function. If the hash function
is chosen well, the objects are distributed uniformly across the array locations.

If two keys map to the same location, a “collision” is said to occur. The standard
mechanism to deal with collisions is to maintain a linked list of objects at each
array location. If the hash function does a good job of spreading objects across the
underlying array and take O(1) time to compute, on average, lookups, insertions,
and deletions haveO(1 + n/m) time complexity, where n is the number of objects and
m is the length of the array. If the “load” n/m grows large, rehashing can be applied
to the hash table. A new array with a larger number of locations is allocated, and
the objects are moved to the new array. Rehashing is expensive (O(n + m) time) but
if it is done infrequently (for example, whenever the number of entries doubles), its
amortized cost is low.

A hash table is qualitatively different from a sorted array—keys do not have to
appear in order, and randomization (specifically, the hash function) plays a central
role. Compared to binary search trees (discussed in Chapter 15), inserting and
deleting in a hash table is more efficient (assuming rehashing is infrequent). One
disadvantage of hash tables is the need for a good hash function but this is rarely an
issue in practice. Similarly, rehashing is not a problem outside of realtime systems
and even for such systems, a separate thread can do the rehashing.

A hash function has one hard requirement—equal keys should have equal hash
codes. This may seem obvious, but is easy to get wrong, e.g., by writing a hash
function that is based on address rather than contents, or by including profiling data.

A softer requirement is that the hash function should “spread” keys, i.e., the hash
codes for a subset of objects should be uniformly distributed across the underlying
array. In addition, a hash function should be efficient to compute.
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Now we illustrate the steps in designing a hash function suitable for strings.
First, the hash function should examine all the characters in the string. (If this seem
obvious, the string hash function in the original distribution of Java examined at
most 16 characters, in an attempt to gain speed, but often resulted in very poor
performance because of collisions.)

It should give a large range of values, and should not let one character dominate
(e.g., if we simply cast characters to integers and multiplied them, a single 0 would
result in a hash code of 0). We would also like a rolling hash function, one in which
if a character is deleted from the front of the string, and another added to the end,
the new hash code can be computed in O(1) time. The following function has these
properties:

1 int string_hash(const string& str, int modulus) {

2 const int kMult = 997;

3 int val = 0;

4 for (const char& c : str) {

5 val = (val * kMult + c) % modulus;

6 }

7 return val;

8 }

A hash table is a good data structure to represent a dictionary, i.e., a set of strings.
In some applications, a trie, which is an tree data structure that is used to store a
dynamic set of strings. Unlike a BST, nodes in the tree do not store a key. Instead,
the node’s position in the tree defines the key which it is associated with.

13.1 Partition into anagrams

Anagrams are popular word play puzzles, where by rearranging letters of one set of
words, you get another set of words. For example, “eleven plus two” is an anagram
for “twelve plus one”. Crossword puzzle enthusiasts would like to be able to generate
all possible anagrams for a given set of letters.

Problem 13.1 : Write a function that takes as input a dictionary of English words,
and returns a partition of the dictionary into subsets of words that are all anagrams
of each other. pg. 138

13.2 Test if an anonymous letter is constructible

A hash table can be viewed as a dictionary. For this reason, hash tables commonly
appear in string processing.

Problem 13.2 : You are required to write a method which takes an anonymous letter
L and text from a magazine M. Your method is to return true iff L can be written
using M, i.e., if a letter appears k times in L, it must appear at least k times in M.

pg. 139
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13.3 Find the line through the most points

Problem 13.3 : Let P be a set of n points in the plane. Each point has integer
coordinates. Design an efficient algorithm for computing a line that contains the
maximum number of points in P. pg. 140
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Chapter

14
Sorting

PROBLEM 14 (Meshing). Two monotone sequences S, T, of lengths n, m, respec-
tively, are stored in two systems of n(p + 1), m(p + 1) consecutive memory locations,
respectively: s, s + 1, . . . , s + n(p + 1) − 1 and t, t + 1, . . . , t + m(p + 1) − 1. . . . It is
desired to find a monotone permutation R of the sum [S,T], and place it at the locations
r, r + 1, . . . , r + (n + m)(p + 1) − 1.

— “Planning And Coding Of Problems For An Electronic Computing Instrument,”
H. H. Goldstine and J. von Neumann, 1948

Sorting—rearranging a collection of items into increasing or decreasing order—is a
common problem in computing. Sorting is used to preprocess the collection to make
searching faster (as we saw with binary search through an array), as well as identify
items that are similar (e.g., students are sorted on test scores).

Naïve sorting algorithms run in O(n2) time. A number of sorting algorithms
run in O(n log n) time—heapsort, merge sort, and quicksort are examples. Each has
its advantages and disadvantages: for example, heapsort is in-place but not stable;
merge sort is stable but not in-place; quicksort runs O(n2) time in worst case. (An
in-place sort is one which uses O(1) space; a stable sort is one where entries which
are equal appear in their original order.)

A well-implemented quicksort is usually the best choice for sorting. We briefly
outline alternatives that are better in specific circumstances.

For short arrays, e.g., 10 or fewer elements, insertion sort is easier to code and
faster than asymptotically superior sorting algorithms. If every element is known to
be at most k places from its final location, a min-heap can be used to get an O(n log k)
algorithm. If there are a small number of distinct keys, e.g., integers in the range
[0..255], counting sort, which records for each element, the number of elements less
than it, works well. This count can be kept in an array (if the largest number is
comparable in value to the size of the set being sorted) or a BST, where the keys are
the numbers and the values are their frequencies. If there are many duplicate keys
we can add the keys to a BST, with linked lists for elements which have the same
key; the sorted result can be derived from an in-order traversal of the BST.

Most sorting algorithms are not stable. Merge sort, carefully implemented, can
be made stable. Another solution is to add the index as an integer rank to the keys
to break ties.
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Most sorting routines are based on a compare function that takes two items as
input and returns−1 if the first item is smaller than the second item, 0 if they are equal
and 1 otherwise. However, it is also possible to use numerical attributes directly, e.g.,
in radix sort.

The heap data structure is discussed in detail in Chapter 11. Briefly, a max-heap
(min-heap) stores keys drawn from an ordered set. It supports O(log n) inserts and
O(1) time lookup for the maximum (minimum) element; the maximum (minimum)
key can be deleted in O(log n) time. Heaps can be helpful in sorting problems, as
illustrated by Problem 11.1 on Page 62.

14.1 Compute the intersection of two sorted arrays

A natural implementation for a search engine is to retrieve documents that match the
set of words in a query by maintaining an inverted index. Each page is assigned an
integer identifier, its document-ID. An inverted index is a mapping that takes a word
w and returns a sorted array of page-ids which contain w—the sort order could be,
for example, the page rank in descending order. When a query contains multiple
words, the search engine finds the sorted array for each word and then computes the
intersection of these arrays—these are the pages containing all the words in the query.
The most computationally intensive step of doing this is finding the intersection of
the sorted arrays.

Problem 14.1 : Given sorted arrays A and B of lengths n and m respectively, return
an array C containing elements common to A and B. The array C should be free of
duplicates. How would you perform this intersection if—(1.) n ≈ m and (2.) n� m?

pg. 142

14.2 Render a calendar

Consider the problem of designing an online calendaring application. One compo-
nent of the design is to render the calendar, i.e., display it visually.

Suppose each day consists of a number of events, where an event is specified
as a start time and a finish time. Individual events for a day are to be rendered as
nonoverlapping rectangular regions whose sides are parallel to the x- and y-axes.
Let the x-axis correspond to time. If an event starts at time b and ends at time e, the
upper and lower sides of its corresponding rectangle must be at b and e, respectively.
Figure 14.1 on the facing page represents a set of events.

Suppose the y-coordinates for each day’s events must lie between 0 and L (a pre-
specified constant), and the rectangle for each event has the same “height”, which is
the distance between the sides parallel to the x-axis is fixed. Your task is to compute
the maximum height an event rectangle can have. In essence, this is equivalent to
the following problem.

Problem 14.2 : Given a set of n events, how would you determine the maximum
number of events that take place concurrently? pg. 143
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E1 E2 E3 E4

E5 E6 E7

E8 E9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 14.1: A set of nine events. The earliest starting event begins at time 1; the latest ending event
ends at time 17. The maximum number of concurrent events is 3, e.g., {E1,E5,E8} as well as others.

14.3 Add a closed interval

Consider a set U consisting of disjoint closed intervals. This problem is con-
cerned with adding an interval I to U and computing a new set of disjoint and
sorted intervals containing exactly the numbers in U ∪ {I}. For example, if U =

〈[0, 2], [3, 6], [7, 7], [9, 12]〉, and I = [1, 8] is added, the result should be 〈[0, 8], [9, 12]〉.

Problem 14.3 : Write a function which takes as input an array A of disjoint closed
intervals with integer endpoints, sorted by increasing order of left endpoint, and an
interval I, and returns the union of I with the intervals in A, expressed as a union of
disjoint intervals. pg. 144
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Chapter

15
Binary Search Trees

The number of trees which can be formed with
n + 1 given knots α, β, γ, . . . = (n + 1)n−1.

— “A Theorem on Trees,”
A. Cayley, 1889

Adding and deleting elements to an array is computationally expensive, particularly
when the array needs to stay sorted. BSTs are similar to arrays in that the keys are in
a sorted order. However, unlike arrays, elements can be added to and deleted from
a BST efficiently. BSTs require more space than arrays since each node stores two
pointers, one for each child, in addition to the key.

A BST is a binary tree as defined in Chapter 10 in which the nodes store keys
drawn from a totally ordered set. The keys stored at nodes have to respect the BST
property—the key stored at a node is greater than or equal to the keys stored at the
nodes of its left subtree and less than or equal to the keys stored in the nodes of its
right subtree. Figure 15.1 on the next page shows a BST whose keys are the first 16
prime numbers.

Key lookup, insertion, and deletion take time proportional to the height of the tree,
which can in worst-case beO(n), if insertions and deletions are naïvely implemented.
However, there are implementations of insert and delete which guarantee the tree
has height O(log n). These require storing and updating additional data at the tree
nodes. Red-black trees are an example of balanced BSTs and are widely used in data
structure libraries, e.g., to implement maps in the Standard Template Library (STL).

The BST prototype in C++ is listed as follows:

1 template <typename T>

2 struct BSTNode {

3 T data;

4 unique_ptr <BSTNode<T>> left, right;

5 };

15.1 Test if a binary tree satisfies the BST property

Problem 15.1 : Write a function that takes as input the root of a binary tree whose
nodes have a key field, and returns true iff the tree satisfies the BST property. pg. 145
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Figure 15.1: An example BST.

15.2 Find the first key larger than k in a BST

BSTs offer more than the ability to search for a key—they can be used to find the
min and max elements, look for the successor or predecessor of a given search key
(which may or may not be presented in the BST), and enumerate the elements in
sorted order.

Problem 15.2 : Write a function that takes a BST T and a key k, and returns the first
entry larger than k that would appear in an inorder traversal. If k is absent or no
key larger than k is present, return null. For example, when applied to the BST in
Figure 15.1 you should return 29 if k = 23; if k = 32, you should return null. pg. 148

15.3 Build a BST from a sorted array

Let A be a sorted array of n numbers. A super-exponential number of BSTs can be
built on the elements of A: 1

n+1

(2n
n

)
to be precise. Some of these trees are skewed, and

are closer to lists; others are more balanced.

Problem 15.3 : How would you build a BST of minimum possible height from a
sorted array A? pg. 149
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Chapter

16
Recursion

The power of recursion evidently lies in the possibility of defining an
infinite set of objects by a finite statement. In the same manner, an
infinite number of computations can be described by a finite recursive
program, even if this program contains no explicit repetitions.

— “Algorithms + Data Structures = Programs,”
N. E. Wirth, 1976

Recursion is a method where the solution to a problem depends partially on
solutions to smaller instances of related problems. Two key ingredients to a successful
use of recursion are identifying the base cases, which are to be solved directly, and
ensuring progress, that is the recursion converges to the solution.

Recursion can be applied to many types of problems. As described on Page 28,
recursion is especially suitable when the input is expressed using recursive rules.

In this chapter we study recursion in a general form, as well as its application
to enumeration and divide-and-conquer. Recursion is suitable for solving computa-
tionally intractable problems (Page on Page 40). Both backtracking and branch-and-
bound are naturally formulated using recursion; Problem 16.3 illustrates them.

Chapter 17 describes dynamic programming, which conceptually is based on
recursion augmented with a cache to avoid solving the same problem multiple times.

16.1 The Towers of Hanoi problem

You are given n rings. The i-th ring has diameter i. The rings are initially in sorted
order on a peg (P1), with the largest ring at the bottom. You are to transfer these rings
to another peg (P2), which is initially empty. This is illustrated in Figure 16.1 on the
next page. You have a third peg (P3), which is initially empty. The only operation
you can do is taking a single ring from the top of one peg and placing it on the top
of another peg; you must never place a bigger ring above a smaller ring.

Problem 16.1 : Exactly n rings on P1 need to be transferred to P2, possibly using P3
as an intermediate, subject to the stacking constraint. Write a function that prints a
sequence of operations that transfers all the rings from P1 to P2. pg. 149

16.2 Enumerate the power set

The power set of a set S is the set of all subsets of S, including both the empty set ∅
and S itself. The power set of {A,B,C} is graphically illustrated in Figure 16.2 on the
facing page.
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P1 P2 P3

(a) Initial configuration.

P1 P2 P3

(b) Desired configuration.

Figure 16.1: Towers of Hanoi for n = 6.

∅

{A}

{B}

{C}

{A,B}

{A,C}

{B,C}
{A,B,C}

Figure 16.2: The power set of {A,B,C} is {∅, {A}, {B}, {C}, {A,B}, {B,C}, {A,C}, {A,B,C}}.

Problem 16.2 : Implement a method that takes as input a set S of n distinct elements,
and prints the power set of S. Print the subsets one per line, with elements separated
by commas. pg. 151

16.3 Implement a Sudoku solver

In this problem you are to write a Sudoku solver. The decision version of the gener-
alized Sudoku problem is NP-complete; however this is restricted to the traditional
9 × 9 grid.

Problem 16.3 : Implement a Sudoku solver. Your program should read an instance
of Sudoku from the command line. The command line argument is a sequence of
3-digit strings, each encoding a row, a column, and a digit at that location. pg. 153

Divide-and-conquer

A divide-and-conquer algorithm works by repeatedly decomposing a problem into
two or more smaller independent subproblems of the same kind, until it gets to in-
stances that are simple enough to be solved directly. The solutions to the subproblems
are then combined to give a solution to the original problem.

Merge sort and quicksort are classical examples of divide-and-conquer. In merge
sort, the array A[0 : n − 1] is sorted by sorting A[0 : bn/2c] and A[bn/2c + 1 : n − 1],
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and merging them. In quicksort, A[0 : n − 1] is sorted by selecting a pivot element
A[r] and reordering the elements of A to make all elements appearing before A[r]
less than or equal to A[r] and all elements appearing after A[r] greater than or equal
to A[r]. The subarray consisting of elements before A[r] and the subarray consisting
of elements after A[r] are sorted, and the resulting array is completely sorted.

Interestingly, the divide step in merge sort is trivial; the challenge is in combining
the results. With quicksort, the opposite is true. Problems 11.1 on Page 62 and 6.1 on
Page 46 illustrate the key computations in merge sort and quicksort.

A divide-and-conquer algorithm is not always optimum. A minimum spanning
tree (MST) is a minimum weight set of edges in a weighted undirected graph which
connect all vertices in the graph. A natural divide-and-conquer algorithm for com-
puting the MST is to partition the vertex set V into two subsets V1 and V2, compute
MSTs for V1 and V2, and then join these two MSTs with an edge of minimum weight
between V1 and V2. Figure 16.3 shows how this algorithm can lead to suboptimal
results.
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(a) A weighted undirected graph.
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(b) An MST built from the MSTs on
{a, b, c} and {d, e. f }.
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f
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(c) An optimum MST.

Figure 16.3: Divide-and-conquer applied to the MST problem is suboptimum.

The term divide-and-conquer is also sometimes applied to algorithms that reduce
a problem to only one subproblem, e.g., binary search. Such algorithms can be imple-
mented more efficiently than general divide-and-conquer algorithms. In particular,
these algorithms use tail recursion, which can be replaced by a loop. Decrease and
conquer is a more appropriate term for such algorithms.

Divide-and-conquer is not synonymous with recursion. First of all, in divide-and-
conquer, the problem is divided into two or more independent smaller problems
that are of the same type as the original problem. Recursion is more general—
there may be a single subproblem, e.g., binary search, the subproblems may not be
independent, e.g., dynamic programming, and they may not be of the same type
as the original, e.g., regular expression matching. In addition, sometimes in order
to improve runtime, and occasionally to reduce space complexity, a divide-and-
conquer algorithm is implemented using iteration instead of recursion. The iterative
implementation mimics the recursion, perhaps using a stack. Invariably, the iterative
version is more challenging to implement correctly.
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Chapter

17
Dynamic Programming

The important fact to observe is that we have attempted to solve
a maximization problem involving a particular value of x and
a particular value of N by first solving the general problem
involving an arbitrary value of x and an arbitrary value of N.

— “Dynamic Programming,”
R. E. Bellman, 1957

DP is a general technique for solving complex optimization problems that can be
decomposed into overlapping subproblems. Like divide-and-conquer, we solve the
problem by combining the solutions of multiple smaller problems but what makes
DP different is that the subproblems may not be independent. A key to making
DP efficient is reusing the results of intermediate computations. (The word “pro-
gramming” in dynamic programming does not refer to computer programming—the
word was chosen by Richard Bellman to describe a program in the sense of a sched-
ule.) Problems which are naturally solved using DP are a popular choice for hard
interview questions.

To illustrate the idea underlying DP, consider the problem of computing Fibonacci
numbers defined by Fn = Fn−1 +Fn−2, F0 = 0 and F1 = 1. A function to compute Fn that
recursively invokes itself to compute Fn−1 and Fn−2 would have a time complexity
that is exponential in n. However, if we make the observation that recursion leads to
computing Fi for i ∈ [0,n−1] repeatedly, we can save the computation time by storing
these results and reusing them. This makes the time complexity linear in n, albeit at
the expense of O(n) storage. Note that the recursive implementation requires O(n)
storage too, though on the stack rather than the heap and that the function is not tail
recursive since the last operation performed is + and not a recursive call.

The key to solving any DP problem efficiently is finding the right way to break
the problem into subproblems such that
− the bigger problem can be solved relatively easily once solutions to all the

subproblems are available, and
− you need to solve as few subproblems as possible.

In some cases, this may require solving a slightly different optimization problem
than the original problem. For example, consider the following problem: given an
array of integers A of length n, find the interval indices a and b such that

∑b
i=a A[i]

is maximized. As a concrete example, the interval corresponding to the maximum
subarray sum for the array in Figure 17.1 on the following page is [0, 3].
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A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

904 40 523 12 -335 -385 -124 481 -31

Figure 17.1: An array with a maximum subarray sum of 1479.

The brute-force algorithm, which computes each subarray sum, has O(n3) time
complexity—there are n(n−1)

2 subarrays, and each subarray sum can be computed in
O(n) time. The brute-force algorithm can be improved to O(n2) by first computing
sums S[i] for subarrays A[0 : i] for each i < n; the sum of subarray A[i : j] is
S[ j] − S[i − 1], where S[−1] is taken to be 0.

Here is a natural divide-and-conquer algorithm. We solve the problem for the
subarrays L = A[0 : b n

2 c] and R = A[b n
2 c + 1 : n − 1]. In addition to the answers for

each, we also return the maximum subarray sum l for any subarray ending at the
last entry in L, and the maximum subarray sum r for any subarray starting at 0 for
R. The maximum subarray sum for A is the maximum of l + r, the answer for L, and
the answer for R. The time complexity analysis is similar to that for quicksort, which
leads to an O(n log n).

Now we will solve this problem by using DP. A natural thought is to assume we
have the solution for the subarray A[0 : n− 2]. However, even if we knew the largest
sum subarray for subarray A[0 : n − 2], it does not help us solve the problem for
A[0 : n − 1]. A better approach is to iterate through the array. For each index j, the
maximum subarray ending at j is equal to S[ j] − mini≤ j S[i]. During the iteration,
we cache the minimum subarray sum we have visited and compute the maximum
subarray for each index. The time spent per index is constant, leading to an O(n)
time and O(1) space solution. The code below returns a pair of indices (i, j) such that
A[i : j−1] is a maximum subarray. It is legal for all array entries to be negative, or the
array to be empty. The algorithm handles these input cases correctly. Specifically, it
returns equal indices, which denote an empty subarray.

1 pair<int, int> find_maximum_subarray(const vector<int>& A) {

2 // A[range.first : range.second - 1] will be the maximum subarray.

3 pair<int, int> range(0, 0);

4 int min_idx = -1, min_sum = 0, sum = 0, max_sum = 0;

5 for (int i = 0; i < A.size(); ++i) {

6 sum += A[i];

7 if (sum < min_sum) {

8 min_sum = sum, min_idx = i;

9 }

10 if (sum - min_sum > max_sum) {

11 max_sum = sum - min_sum, range = {min_idx + 1, i + 1};

12 }

13 }

14 return range;

15 }

Here are two variants of the subarray maximization problem that can be solved
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with ideas that are similar to the above approach: find indices a and b such that∑b
i=a A[i] is—(1.) closest to 0 and (2.) closest to t. (Both entail some sorting, which

increases the time complexity to O(n log n).) Another good variant is finding indices
a and b such that

∏b
i=a A[i] is maximum when the array contains both positive and

negative integers.
A common mistake in solving DP problems is trying to think of the recursive case

by splitting the problem into two equal halves, a la quicksort, i.e., somehow solve
the subproblems for subarrays A[0 : b n

2 c] and A[b n
2 c + 1 : n] and combine the results.

However, in most cases, these two subproblems are not sufficient to solve the original
problem.

17.1 Count the number of score combinations

In an American football game, a play can lead to 2 points (safety), 3 points (field
goal), or 7 points (touchdown). Given the final score of a game, we want to compute
how many different combinations of 2, 3, and 7 point plays could make up this score.

For example, if W = {2, 3, 7}, four combinations of plays yield a score of 12:
− 6 safeties (2 × 6 = 12),
− 3 safeties and 2 field goals (2 × 3 + 3 × 2 = 12),
− 1 safety, 1 field goal and 1 touchdown (2 × 1 + 3 × 1 + 7 × 1 = 12), and
− 4 field goals (3 × 4 = 12).

Problem 17.1 : You have an aggregate score s and W which specifies the points that
can be scored in an individual play. How would you find the number of combinations
of plays that result in an aggregate score of s? How would you compute the number
of distinct sequences of individual plays that result in a score of s? pg. 155

17.2 Count the number of ways to traverse a 2D array

Suppose you start at the top-left corner of an n×m 2D array A and want to get to the
bottom-right corner. The only way you can move is by either going right or going
down. Three legal paths for a 5 × 5 2D array are given in Figure 17.2.

Figure 17.2: Paths through a 2D array.

Problem 17.2 : How many ways can you go from the top-left to the bottom-right
in an n × m 2D array? How would you count the number of ways in the presence
of obstacles, specified by an n × m Boolean 2D array B, where a true represents an
obstacle. pg. 156
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17.3 The knapsack problem

A thief breaks into a clock store. His knapsack will hold at most w ounces of clocks.
Clock i weighs wi ounces and retails for vi dollars. The thief must either take or leave
a clock, and he cannot take a fractional amount of an item. His intention is to take
clocks whose total value is maximum subject to the knapsack capacity constraint. His
problem is illustrated in Figure 17.3. If the knapsack can hold at most 130 ounces,
he cannot take all the clocks. If he greedily chooses clocks, in decreasing order of
value-to-weight ratio, he will choose P,H,O,B, I, and L in that order for a total value
of $669. However, {H, J,O} is the optimum selection, yielding a total value of $695.
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Figure 17.3: A clock store.

Problem 17.3 : Design an algorithm for the knapsack problem that selects a subset of
items that has maximum value and weighs at most w ounces. All items have integer
weights and values. pg. 158

17.4 The BEDBATHANDBEYOND.COM problem

Suppose you are designing a search engine. In addition to getting keywords from
a page’s content, you would like to get keywords from Uniform Resource Locators
(URLs). For example, bedbathandbeyond.com should be associated with “bed bath
and beyond” (in this version of the problem we also allow “bed bat hand beyond”
to be associated with it).

Problem 17.4 : Given a dictionary, i.e., a set of strings, and a string s, design an effi-
cient algorithm that checks whether s is the concatenation of a sequence of dictionary
words. If such a concatenation exists, your algorithm should output it. pg. 158

17.5 Find the longest nondecreasing subsequence

The problem of finding the longest nondecreasing subsequence in a sequence of inte-
gers has implications to many disciplines, including string matching and analyzing
card games. As a concrete instance, the length of a longest nondecreasing subse-
quence for the array A in Figure 17.4 on the next page is 4. There are multiple longest
nondecreasing subsequences, e.g., 〈0, 4, 10, 14〉 and 〈0, 2, 6, 9〉.
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A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

0 8 4 12 2 10 6 14 1 9

Figure 17.4: An array whose longest nondecreasing subsequences are of length 4.

Problem 17.5 : Given an array A of n numbers, find a longest subsequence 〈i0, . . . , ik−1〉

such that i j < i j+1 and A[i j] ≤ A[i j+1] for any j ∈ [0, k − 2]. pg. 159
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Chapter

18
Greedy Algorithms and Invariants

The intended function of a program, or part of a program, can
be specified my making general assertions about the values
which the relevant variables will take after execution of the
program.

— “An Axiomatic Basis for Computer Programming,”
C. A. R. Hoare, 1969

Greedy algorithms

As described on Page 31, a greedy algorithm is an algorithm that computes a solution
in steps; at each step the algorithm makes a decision that is locally optimum, and it
never changes that decision.

The example on Page 31 illustrates how different greedy algorithms for the
same problem can differ in terms of optimality. As another example, consider
making change for 48 pence in the old British currency where the coins came in
30, 24, 12, 6, 3, and 1 pence denominations. Suppose our goal is to make change us-
ing the smallest number of coins. The natural greedy algorithm iteratively chooses
the largest denomination coin that is less than or equal to the amount of change that
remains to be made. If we try this for 48 pence, we get three coins—30 + 12 + 6.
However, the optimum answer would be two coins—24 + 24.

In its most general form, the coin changing problem is NP-hard on Page 38, but
for some coinages, the greedy algorithm is optimum—e.g., if the denominations are
of the form {1, r, r2, r3

}. (An ad hoc argument can be applied to show that the greedy
algorithm is also optimum for US coinage.) The general problem can be solved in
pseudo-polynomial time using DP in a manner similar to Problem 17.3 on Page 82.

18.1 Implement Huffman coding

One way to compress a large text is by building a code book which maps each
character to a bit string, referred to as its code word. Compression consists of
concatenating the bit strings for each character to form a bit string for the entire text.

When decompressing the string, we read bits until we find a string that is in
the code book and then repeat this process until the entire text is decoded. For the
compression to be reversible, it is sufficient that the code words have the property
that no code word is a prefix of another. For example, 011 is a prefix of 0110 but not
a prefix of 1100.
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Since our objective is to compress the text, we would like to assign the shorter
strings to more common characters and the longer strings to less common charac-
ters. We will restrict our attention to individual characters. (We may achieve better
compression if we examine common sequences of characters, but this increases the
time complexity.)

The intuitive notion of commonness is formalized by the frequency of a character
which is a number between zero and one. The sum of the frequencies of all the
characters is 1. The average code length is defined to be the sum of the product of
the length of each character’s code word with that character’s frequency. Table 18.1
shows the large variation in the frequencies of letters of the English alphabet.

Table 18.1: English characters and their frequencies, expressed as percentages, in everyday docu-
ments.

Character Frequency Character Frequency Character Frequency
a 8.17 j 0.15 s 6.33
b 1.49 k 0.77 t 9.06
c 2.78 l 4.03 u 2.76
d 4.25 m 2.41 v 0.98
e 12.70 n 6.75 w 2.36
f 2.23 o 7.51 x 0.15
g 2.02 p 1.93 y 1.97
h 6.09 q 0.10 z 0.07
i 6.97 r 5.99

Problem 18.1 : Given a set of symbols with corresponding frequencies, find a code
book that has the smallest average code length. pg. 162

Invariants

An invariant is a condition that is true during execution of a program. Invariants can
be used to design algorithms as well as reason about their correctness.

The reduce and conquer algorithms seen previously, e.g., binary search, maintain
the invariant that the space of candidate solutions contains all possible solutions as
the algorithms execute.

Sorting algorithms nicely illustrates algorithm design using invariants. For ex-
ample, intuitively, selection sort is based on finding the smallest element, the next
smallest element, etc. and moving them to their right place. More precisely, we work
with successively larger subarrays beginning at index 0, and preserve the invari-
ant that these subarrays are sorted and their elements are less than or equal to the
remaining elements.

As another example, suppose we want to find two elements in a sorted array A
summing to a specified K. Let n denote the length of A. We start by considering
s0,n−1 = A[0]+A[n−1]. If s0,n−1 = K, we are done. If s0,n−1 < K, then we can restrict our
attention to solving the problem on the subarray A[1 : n− 1], since A[0] can never be
one of the two elements. Similarly, if s0,n−1 > K, we restrict the search to A[0 : n − 2].
The invariant is that if two elements which sum to K exist, they must lie within the
subarray currently under consideration.
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18.2 The 3-sum problem

Let A be an array of n numbers. Let t be a number, and k be an integer in [1,n]. Define
A to k-create t iff there exists k indices i0, i1, . . . , ik−1 (not necessarily distinct) such that∑k−1

j=0 A[i j] = t.

Problem 18.2 : Design an algorithm that takes as input an array A and a number t,
and determines if A 3-creates t. pg. 164

18.3 Compute the largest rectangle under the skyline

You are given a sequence of adjacent buildings. Each has unit width and an integer
height. These buildings form the skyline of a city. An architect wants to know the
area of a largest rectangle contained in this skyline. For example, for the skyline
in Figure 18.1, the largest rectangle is the brick-patterned one. Note that it is not
the contained rectangle with maximum height (which is denoted by the vertical-
patterning), or the maximum width (which is denoted by the slant-patterning).

Figure 18.1: Buildings, their skyline, and the largest contained rectangle.

Problem 18.3 : Let A be an array of n numbers encoding the heights of adjacent
buildings of unit width. Design an algorithm to compute the area of the largest
rectangle contained in this skyline, i.e., compute maxi< j(( j − i + 1) × min j

k=i A[k]).
pg. 165
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Chapter

19
Graphs

Concerning these bridges, it was asked whether anyone could arrange a
route in such a way that he would cross each bridge once and only once.

— “The solution of a problem relating to the geometry of position,”
L. Euler, 1741

Informally, a graph is a set of vertices and connected by edges. Formally, a directed
graph is a tuple (V,E), where V is a set of vertices and E ⊂ V × V is the set of edges.
Given an edge e = (u, v), the vertex u is its source, and v is its sink. Graphs are often
decorated, e.g., by adding lengths to edges, weights to vertices, and a start vertex. A
directed graph can be depicted pictorially as in Figure 19.1.

A path in a directed graph from u to vertex v is a sequence of vertices
〈v0, v1, . . . , vn−1〉 where v0 = u, vn−1 = v, and (vi, vi+1) ∈ E for i ∈ {0, . . . ,n − 2}. The
sequence may contain a single vertex. The length of the path 〈v0, v1, . . . , vn−1〉 is n− 1.
Intuitively, the length of a path is the number of edges it traverses. If there exists a
path from u to v, v is said to be reachable from u.

For example, the sequence 〈a, c, e, d, h〉 is a path in the graph represented in Fig-
ure 19.1.

a b

c d

e

f g h

i jk

l

m n

5

1

1
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12

Figure 19.1: A directed graph with weights on edges.

A directed acyclic graph (DAG) is a directed graph in which there are no cycles, i.e.,
paths of the form 〈v0, v1, . . . , vn−1, v0〉,n ≥ 1. See Figure 19.2 on the following page for
an example of a directed acyclic graph. Vertices in a DAG which have no incoming
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edges are referred to as sources; vertices which have no outgoing edges are referred
to as sinks. A topological ordering of the vertices in a DAG is an ordering of the vertices
in which each edge is from a vertex earlier in the ordering to a vertex later in the
ordering.

a b

c d

e

f g h

i jk

l

m n

Figure 19.2: A directed acyclic graph. Vertices a, g,m are sources and vertices l, f , h,n are sinks. The
ordering 〈a, b, c, e, d, g, h, k, i, j, f , l,m,n〉 is a topological ordering of the vertices.

An undirected graph is also a tuple (V,E); however, E is a set of unordered pairs of
V. Graphically, this is captured by drawing arrowless connections between vertices,
as in Figure 19.3.

a

c

b

d

e f g h i j k

l

m

Figure 19.3: An undirected graph.

If G is an undirected graph, vertices u and v are said to be connected if G contains a
path from u to v; otherwise, u and v are said to be disconnected. A graph is said to be
connected if every pair of vertices in the graph is connected. A connected component
is a maximal set of vertices C such that each pair of vertices in C is connected in G.
Every vertex belongs to exactly one connected component.

A directed graph is called weakly connected if replacing all of its directed edges
with undirected edges produces a connected undirected graph. It is connected if it
contains a directed path from u to v or a directed path from v to u for every pair of
vertices u and v. It is strongly connected if it contains a directed path from u to v and
a directed path from v to u for every pair of vertices u and v.

Graphs naturally arise when modeling geometric problems, such as determining
connected cities. However, they are more general, and can be used to model many
kinds of relationships.
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A graph can be implemented in two ways—using adjacency lists or an adjacency
matrix. In the adjacency list representation, each vertex v, has a list of vertices to
which it has an edge. The adjacency matrix representation uses a |V| × |V| Boolean-
valued matrix indexed by vertices, with a 1 indicating the presence of an edge. The
time and space complexities of a graph algorithm are usually expressed as a function
of the number of vertices and edges.

A tree (sometimes called a free tree) is a special sort of graph—it is an undirected
graph that is connected but has no cycles. (Many equivalent definitions exist, e.g.,
a graph is a free tree iff there exists a unique path between every pair of vertices.)
There are a number of variants on the basic idea of a tree. A rooted tree is one where
a designated vertex is called the root, which leads to a parent-child relationship on
the nodes. An ordered tree is a rooted tree in which each vertex has an ordering on
its children. Binary trees, which are the subject of Chapter 10, differ from ordered
trees since a node may have only one child in a binary tree, but that node may be a
left or a right child, whereas in an ordered tree no analogous notion exists for a node
with a single child. Specifically, in a binary tree, there is position as well as order
associated with the children of nodes.

As an example, the graph in Figure 19.4 is a tree. Note that its edge set is a subset
of the edge set of the undirected graph in Figure 19.3 on the preceding page. Given
a graph G = (V,E), if the graph G′ = (V,E′) where E′ ⊂ E, is a tree, then G′ is referred
to as a spanning tree of G.

a

c

b

d

e f g h i j k

l

m

Figure 19.4: A tree.

Graph search

Computing vertices which are reachable from other vertices is a fundamental opera-
tion which can be performed in one of two idiomatic ways, namely depth-first search
(DFS) and breadth-first search (BFS). Both have linear time complexity—O(|V| + |E|)
to be precise. In a worst case there is a path from the initial vertex covering all ver-
tices without any repeats, and the DFS edges selected correspond to this path, so the
space complexity of DFS is O(|V|) (this space is implicitly allocated on the function
call stack). The space complexity of BFS is also O(|V|), since in a worst case there is
an edge from the initial vertex to all remaining vertices, implying that they will all
be in the BFS queue simultaneously at some point.

DFS and BFS differ from each other in terms of the additional information they
provide, e.g., BFS can be used to compute distances from the start vertex and DFS can
be used to check for the presence of cycles. Key notions in DFS include the concept
of discovery time and finishing time for vertices.
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90 19.1. Search a maze

19.1 Search a maze

It is natural to apply graph models and algorithms to spatial problems. Consider a
black and white digitized image of a maze—white pixels represent open areas and
black spaces are walls. There are two special white pixels: one is designated the
entrance and the other is the exit. The goal in this problem is to find a way of getting
from the entrance to the exit, as illustrated in Figure 19.5.

S

E

(a) A maze.

S

E

(b) A path from entrance to exit.

S

E

(c) A shortest path from entrance to
exit.

Figure 19.5: An instance of the maze search problem, with two solutions, where S and E denote the
entrance and exit, respectively.

Problem 19.1 : Given a 2D array of black and white entries representing a maze with
designated entrance and exit points, find a path from the entrance to the exit, if one
exists. pg. 167

19.2 Paint a Boolean matrix

Let A be a D × D Boolean 2D array encoding a black-and-white image. The entry
A(a, b) can be viewed as encoding the color at location (a, b). Define a path from entry
(a, b) to entry (c, d) to be a sequence of entries 〈(x1, y1), (x2, y2), . . . , (xn, yn)〉 such that
− (a, b) = (x1, y1), (c, d) = (xn, yn), and
− for each i, 1 ≤ i < n, we have |xi − xi+1| + |yi − yi+1| = 1.
Define the region associated with a point (i, j) to be all points (i′, j′) such that there

exists a path from (i, j) to (i′, j′) in which all entries are the same color. In particular
this implies (i, j) and (i′, j′) must be the same color.

Problem 19.2 : Implement a routine that takes a n×m Boolean array A together with
an entry (x, y) and flips the color of the region associated with (x, y). See Figure 19.6
on the next page for an example of flipping. pg. 169

19.3 Transform one string to another

Let s and t be strings and D a dictionary, i.e., a set of strings. Define s to produce t if
there exists a sequence of strings σ = 〈s0, s1, . . . , sn−1〉 such that s0 = s, sn−1 = t, for all
i, si ∈ D, and adjacent strings have the same length and differ in exactly one character.
The sequence σ is called a production sequence.
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(a) (b) (c)

Figure 19.6: The color of all squares associated with the first square marked with a × in (a) have been
recolored to yield the coloring in (b). The same process yields the coloring in (c).

Problem 19.3 : Given a dictionary D and two strings s and t, write a function to
determine if s produces t. Assume that all characters are lowercase alphabets. If
s does produce t, output the length of a shortest production sequence; otherwise,
output −1. pg. 170

Advanced graph algorithms

Up to this point we looked at basic search and combinatorial properties of graphs.
The algorithms we considered were all linear time complexity and relatively
straightforward—the major challenge was in modeling the problem appropriately.

Four classes of problems on graphs can be solved efficiently, i.e., in polynomial
time. Most other problems on graphs are either variants of these or, very likely, not
solvable by polynomial time algorithms. These four classes are:

− Shortest path—given a graph, directed or undirected, with costs on the edges,
find the minimum cost path from a given vertex to all vertices. Variants include
computing the shortest paths for all pairs of vertices, and the case where costs
are all nonnegative.

− Minimum spanning tree—given a connected undirected graph G = (V,E) with
weights on each edge, find a subset E′ of the edges with minimum total weight
such that the subgraph G′ = (V,E′) is connected.

− Matching—given an undirected graph, find a maximum collection of edges
subject to the constraint that every vertex is incident to at most one edge. The
matching problem for bipartite graphs is especially common and the algorithm
for this problem is much simpler than for the general case. A common variant
is the maximum weighted matching problem in which edges have weights and
a maximum weight edge set is sought, subject to the matching constraint.

− Maximum flow—given a directed graph with a capacity for each edge, find the
maximum flow from a given source to a given sink, where a flow is a function
mapping edges to numbers satisfying conservation (flow into a vertex equals
the flow out of it) and the edge capacities. The minimum cost circulation
problem generalizes the maximum flow problem by adding lower bounds on
edge capacities, and for each edge, a cost per unit flow.

In this chapter we restrict our attention to shortest-path problems.
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19.4 Compute a minimum delay schedule, unlimited resources

Let T = {T0,T1, . . . ,Tn−1} be a set of tasks. Each task runs on a single generic
server. Task Ti has a duration τi, and a set Pi (possibly empty) of tasks that must be
completed before Ti can be started. The set is feasible if there does not exist a sequence
of tasks 〈T0,T1, . . . ,Tn−1,T0〉 starting and ending at the same task such that for each
consecutive pair of tasks in the sequence, the first task must be completed before the
second task can begin.

Problem 19.4 : Given an instance of the task scheduling problem, compute the least
amount of time in which all the tasks can be performed, assuming an unlimited
number of servers. Explicitly check that the system is feasible. pg. 171

ElementsOfProgrammingInterviews.com



Chapter

20
Parallel Computing

The activity of a computer must include the proper reacting to a
possibly great variety of messages that can be sent to it at un-
predictable moments, a situation which occurs in all information
systems in which a number of computers are coupled to each other.

— “Cooperating sequential processes,”
E. W. Dijkstra, 1965

Parallel computation has become increasingly common. For example, laptops and
desktops come with multiple processors which communicate through shared mem-
ory. High-end computation is often done using clusters consisting of individual
computers communicating through a network.

Parallelism provides a number of benefits:
− High performance—more processors working on a task (usually) means it is

completed faster.
− Better use of resources—a program can execute while another waits on the disk

or network.
− Fairness—letting different users or programs share a machine rather than have

one program run at a time to completion.
− Convenience—it is often conceptually more straightforward to do a task using

a set of concurrent programs for the subtasks rather than have a single program
manage all the subtasks.

− Fault tolerance—if a machine fails in a cluster that is serving web pages, the
others can take over.

Concrete applications of parallel computing include graphical user interfaces
(GUI) (a dedicated thread handles UI actions while other threads are, for example,
busy doing network communication and passing results to the UI thread, resulting in
increased responsiveness), Java virtual machines (a separate thread handles garbage
collection which would otherwise lead to blocking, while another thread is busy
running the user code), web servers (a single logical thread handles a single client
request), scientific computing (a large matrix multiplication can be split across a
cluster), and web search (multiple machines crawl, index, and retrieve web pages).

The two primary models for parallel computation are the shared memory model,
in which each processor can access any location in memory, and the distributed
memory model, in which a processor must explicitly send a message to another
processor to access its memory. The former is more appropriate in the multicore
setting and the latter is more accurate for a cluster. The questions in this chapter are
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94 20.1. Implement synchronization for two interleaving threads

mostly focused on the shared memory model. We cover a few problems related to
the distributed memory model, such as leader election and sorting large data sets, at
the end of the chapter.

Writing correct parallel programs is challenging because of the subtle interactions
between parallel components. One of the key challenges is races—two concurrent
instruction sequences access the same address in memory and at least one of them
writes to that address. Other challenges to correctness are
− starvation (a processor needs a resource but never gets it, e.g., Problem 20.3),
− deadlock (Thread A acquires Lock L1 and Thread B acquires Lock L2, following

which A tries to acquire L2 and B tries to acquire L1), and
− livelock (a processor keeps retrying an operation that always fails).

Bugs caused by these issues are difficult to find using testing. Debugging them
is also difficult because they may not be reproducible since they are usually load
dependent. It is also often true that it is not possible to realize the performance
implied by parallelism—sometimes a critical task cannot be parallelized, making it
impossible to improve performance, regardless of the number of processors added.
Similarly, the overhead of communicating intermediate results between processors
can exceed the performance benefits.

20.1 Implement synchronization for two interleaving threads

Thread T1 prints odd numbers from 1 to 100; Thread T2 prints even numbers from
1 to 100.

Problem 20.1 : Write Java code in which the two threads, running concurrently, print
the numbers from 1 to 100 in order. pg. 172

20.2 Implement a Timer class

Consider a web-based calendar in which the server hosting the calendar has to
perform a task when the next calendar event takes place. (The task could be sending
an email or a Short Message Service (SMS).) Your job is to design a facility that
manages the execution of such tasks.

Problem 20.2 : Develop a Timer class that manages the execution of deferred tasks.
The Timer constructor takes as its argument an object which includes a Run method
and a name field, which is a string. Timer must support—(1.) starting a thread,
identified by name, at a given time in the future; and (2.) canceling a thread, identified
by name (the cancel request is to be ignored if the thread has already started). pg. 173

20.3 The readers-writers problem

Consider an object s which is read from and written to by many threads. You need
to ensure that no thread may access s for reading or writing while another thread is
writing to s. (Two or more readers may access s at the same time.)

One way to achieve this is by protecting s with a mutex that ensures that two
threads cannot access s at the same time. However, this solution is suboptimal

ElementsOfProgrammingInterviews.com
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because it is possible that a reader R1 has locked s and another reader R2 wants to
access s. Reader R2 does not have to wait until R1 is done reading; instead, R2 should
start reading right away.

This motivates the first readers-writers problem: protect s with the added con-
straint that no reader is to be kept waiting if s is currently opened for reading.

Problem 20.3 : Implement a synchronization mechanism for the first readers-writers
problem. pg. 173
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Chapter

21
Design Problems

We have described a simple but very powerful and flexible pro-
tocol which provides for variation in individual network packet
sizes, transmission failures, sequencing, flow control, and the
creation and destruction of process- to-process associations.

— “A Protocol for Packet Network Intercommunication,”
V. G. Cerf and R. E. Kahn, 1974

This chapter is concerned with system design problems. These problems are fairly
open-ended, and many can be the starting point for a large software project. In an
interview setting when someone asks such a question, you should have a conver-
sation in which you demonstrate an ability to think creatively, understand design
trade-offs, and attack unfamiliar problems. You should sketch key data structures
and algorithms, as well as the technology stack (programming language, libraries,
OS, hardware, and services) that you would use to solve the problem. Some specific
things to keep in mind are implementation time, scalability, testability, security, and
internationalization.

The answers in this chapter are presented in this context—they are meant to be
examples of good responses in an interview and are not definitive state-of-the-art
solutions.

21.1 Implement PageRank

The PageRank algorithm assigns a rank to a web page based on the number of
“important” pages that link to it. The algorithm essentially amounts to the following:

(1.) Build a matrix A based on the hyperlink structure of the web. Specifically,
Ai j = 1

di
if page i links to page j; here di is the total number of unique outgoing

links from page i.
(2.) Find X satisfying X = ε[1] + (1 − ε)ATX. Here ε is a constant, e.g., 1

7 , and [1]
represents a column vector of 1s. The value X[i] is the rank of the i-th page.

The most commonly used approach to solving the above equation is to start with
a value of X, where each component is 1

n (where n is the number of pages) and then
perform the following iteration: Xk = ε[1] + (1 − ε)ATXk−1.

Problem 21.1 : Design a system that can compute the ranks of ten billion web pages
in a reasonable amount of time. pg. 175
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21.2 ImplementMileage Run

Airlines often give customers who fly frequently with them a “status”. This status
allows them early boarding, more baggage, upgrades to executive class, etc. Typi-
cally, status is a function of miles flown in the past twelve months. People who travel
frequently by air sometimes want to take a round trip flight simply to maintain
their status. The destination is immaterial—the goal is to minimize the cost-per-mile
(cpm), i.e., the ratio of dollars spent to miles flown.

Problem 21.2 : Design a system that will help its users find mileage runs. pg. 175
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Hints
When I interview people, and they give me an immediate
answer, they’re often not thinking. So I’m silent. I wait.
Because they think they have to keep answering. And it’s
the second train of thought that’s the better answer.

— R. Leach

Use a hint after you have made a serious attempt at the problem. Ideally, the hint
should give you the flash of insight needed to complete your solution.

Usually, you will receive hints only after you have shown an understanding of
the problem, and have made serious attempts to solve it. See Chapter 2 for strategies
on conducting yourself at the interview.

5.1: Use a lookup table, but don’t use 264 entries!

5.2: Relate x/y to (x − y)/y.

5.3: What base can you easily convert to and from?

5.4: How would you mimic a three-sided coin with a two-sided coin?

5.5: Solve the same problem with 2, 5, 10, and 20 doors.

5.6: Use case analysis: both even; both odd; one even and one odd.

6.1: Think about the partition step in quicksort.

6.2: Identifying the minimum and maximum heights is not enough since the minimum height

may appear after the maximum height. Focus on valid height differences.

6.3: What do you need to know about A[0 : i − 1] when processing A[i]?

6.4: Use a routine that yields k-sized subsets to create a routine for k + 1-sized subsets.

6.5: Suppose you have a procedure which selects k packets from the first n ≥ k packets as

specified. How would you deal with the (n + 1)-th packet?

7.1: Build the result one digit at a time.

7.2: It’s difficult to solve this with one pass.

7.3: Use recursion.

8.1: Two sorted arrays can be merged using two indices. For lists, take care when one pointer

variable reaches the end.

8.2: Use a pair of pointers.

8.3: Consider using two pointers, one fast and one slow.

8.4: Copy the jump field and then copy the next field.

9.1: Use additional storage to track the maximum value.

9.2: First think about solving this problem with a pair of queues.

9.3: Track the head and tail. How can you differentiate a full queue from an empty one?
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10.1: Think of a classic binary tree algorithm that runs in O(h) additional space.

10.2: When is the root the LCA?

10.3: How can you tell whether a node is a left child or right child of its parent?

10.4: Study n’s right subtree. What if n does not have a right subtree?

11.1: Which portion of each file is significant as the algorithm executes?

11.2: Suppose you know the k closest stars in the first n stars. If the (n + 1)-th star is to be added

to the set of k closest stars, which element in that set should be evicted?

11.3: Can you avoid tracking all elements?

12.1: Don’t stop after you reach the first k. Think about the case where every entry equals k.

12.2: Use the decrease and conquer principle.

12.3: The first k elements of A together with the first k elements of B are initial candidates.

Iteratively eliminates a constant fraction of the candidates.

12.4: Can you be sure there is an address which is not in the file?

13.1: Map strings to strings so that strings which are anagrams map to the same string.

13.2: Count.

13.3: A line can be uniquely represented by two numbers.

14.1: Solve the problem if n and m differ by orders of magnitude. What if n ≈ m?

14.2: Focus on endpoints.

14.3: What is the union of two closed intervals?

15.1: Is it correct to check for each node that its key is greater than or equal to the key at its left

child and less than or equal to the key at its right child?

15.2: Perform binary search, keeping some additional state.

15.3: Which element should be the root?

16.1: If you know how to transfer the top n − 1 rings, how does that help move the n-th ring?

16.2: There are 2n subsets for a given set S of size n. There are 2k k-bit words.

16.3: Apply the constraints to speed up a brute-force algorithm.

17.1: Count the number of combinations in which there are 0 w0 plays, then 1 w0 plays, etc.

17.2: If i > 0 and j > 0, you can get to (i, j) from (i − 1, j) or ( j − 1, i).

17.3: The “obvious” recurrence is not the right one.

17.4: Solve the generalized problem, i.e., determine for each prefix of s whether it is the con-

catenation of dictionary words.

17.5: Express the longest nondecreasing subsequence ending at A[i] in terms of the longest

nondecreasing subsequence in A[0 : i − 1].

18.1: Reduce the problem from n symbols to one on n − 1 symbols.

18.2: How would you check if A[i] is part of a triple that 3-creates t?

18.3: How would you efficiently find the largest rectangle which includes the i-th building, and

has height A[i]?

19.1: Model the maze as a graph.

19.2: Solve this conceptually, then think about implementation optimizations.

19.3: Treat strings as vertices in an undirected graph, with an edge between u and v iff the

corresponding strings differ in one character.

19.4: What property does a minimal set of infeasible tasks have?

20.1: The two threads need to notify each other when they are done.

20.2: There are two aspects—data structure design and concurrency.
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20.3: Track the number of readers.

21.1: This must be performed on an ensemble of machines. The right data structures will

simplify the computation.

21.2: Partition the implied features into independent tasks.
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C++11 and C++ for Java developers 103

C++11

C++11 adds a number of features that make for elegant and efficient code. The
C++11 constructs used in the solution code are summarized below.
− The auto attribute assigns the type of a variable based on the initializer expres-

sion.
− The enhanced range-based for-loop allows for easy iteration over a list of

elements.
− The emplace_front and emplace_back methods add new elements to the be-

ginning and end of the container. They are more efficient than push_front

and push_back, and are variadic, i.e., takes a variable number arguments. The
emplace method is similar and applicable to containers where there is only one
way to insert (e.g., a stack or a map).

− The array type is similar to ordinary arrays, but supports .size() and bound-
ary checking. (It does not support automatic resizing.)

− The tuple type implements an ordered set.
− Anonymous functions (“lambdas”) can be written via the [] notation.
− An initializer list uses the {} notation to avoid having to make explicit calls to

constructors when building list-like objects.

C++ for Java developers

C++ is an order of magnitude more complex than Java. Here are some facts about
C++ that can help Java programmers better understand the solution code.
− Operators in C++ can be overloaded. For example, < can be applied to compar-

ing BigNumber objects. The array indexing operator ([]) is often overloaded
for unordered maps and tree maps, e.g., map[k] returns the value associated
with key k.

− Java’s HashMap and HashSet correspond to C++’s unordered_map and
unordered_set, respectively. Java’s TreeSet and TreeMap correspond to C++’s
set and map.

− For set, the comparator is the second argument to the template specification.
For map, the comparator is the third argument to the template specification. (If
< is overloaded, the comparator is optional in both cases.)

− For unordered_map the first argument is the key type, the second is the value
type, and the third (optional) is the hash function. For unordered_set the
first argument is the key type, the second (optional) is the hash function, the
third (optional) is the equals function. The class may simply overload ==,
i.e., implement the method operator==. See Solution 13.3 on Page 140 for an
example.

− C++ uses streams for input-output. The overloaded operators « and » are used
to read and write primitive types and objects from and to streams.

− The :: notation is used to invoke a static member function or refer to a static
field.

− C++ has a built-in pair class used to represent arbitrary pairs.
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− A static_cast is used to cast primitive types, e.g., int to double, as well as
an object to a derived class. The latter is not checked at run time. The compiler
checks obvious incompatibilities at compile time.

− A unique_ptr is a smart pointer that retains sole ownership of an object through
a pointer and destroys that object when the unique_ptr goes out of scope.

− A shared_ptr is a smart pointer with a reference count which the runtime
system uses to implement automatic garbage collection.

Problem 5.1, pg. 43 : How would you go about computing the parity of a very large number
of 64-bit nonnegative integers?

Solution 5.1: The fastest algorithm for manipulating bits can vary based on the
underlying hardware. Let n denote the width of an integer and k the number of bits
set to 1 set in a particular integer. (For example, for a 64-bit integer, n = 64. For the
specific integer (1011)2, k = 3.)

The brute-force algorithm consists of iteratively testing the value of each bit.

1 short parity1(unsigned long x) {

2 short result = 0;

3 while (x) {

4 result ^= (x & 1);

5 x >>= 1;

6 }

7 return result;

8 }

The time complexity of the algorithm above is O(n).
There is a neat trick that erases the lowest set bit of a number in a single operation

which can be used to improve performance in the best and average cases.

1 short parity2(unsigned long x) {

2 short result = 0;

3 while (x) {

4 result ^= 1;

5 x &= (x - 1); // erases the lowest set bit of x.

6 }

7 return result;

8 }

The time complexity of the algorithm above is O(k).
However, when you have to perform a large number of parity operations, and,

more generally, any kind of bit fiddling operation, the best way to proceed is to
precompute the answer and store it in an array-based lookup table. The optimum
size for the lookup table is a function of how much RAM is available, and how
big the cache is. In the implementation below we store the parity of i, a 16-bit
integer in precomputed_parity[i]. Each precomputed_parity[i] can be statically
initialized. Alternately, we can use lazy initialization, with a separate flag bit used to
indicate whether a particular precomputed_parity[i] value is valid. The following
implementation of parity uses this approach. The time complexity is a function of
the size of the keys used to index precomputed_parity. For a sufficiently large array,
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it can be O(1). (This does not include the time to initialize precomputed_parity.)
The time complexity for general n is O(n).

1 short parity3(unsigned long x) {

2 return precomputed_parity[x >> 48] ^

3 precomputed_parity[(x >> 32) & 0b1111111111111111] ^

4 precomputed_parity[(x >> 16) & 0b1111111111111111] ^

5 precomputed_parity[x & 0b1111111111111111];

6 }

We are assuming that the short type is 16 bits, and the unsigned long is 64
bits. The operation x » 48 returns the value of x right-shifted by 48 bits. Since x

is unsigned, the C++ language standard guarantees that bits vacated by the shift
operation are zero-filled. (The result of a right-shift for signed quantities, is imple-
mentation dependent, e.g., either 0 or the sign bit may be propagated into the vacated
bit positions.)

Another implementation with a smaller lookup table is shown below. We
make use of the property that parity is commutative. For example, the parity of
〈b63, b62, . . . , b3, b2, b1, b0〉 equals the parity of 〈b63 ⊕ b31, b62 ⊕ b30, . . . , b32 ⊕ b0〉; the latter
32 bit value can be computed with one shift and one XOR instruction. This leads to
the algorithm below. The final step entails a lookup into a lookup table indexed by
a 4 bit quantity—we could instead have performed two more shift and XOR steps.

1 short parity4(unsigned long x) {

2 x ^= x >> 32;

3 x ^= x >> 16;

4 x ^= x >> 8;

5 x ^= x >> 4;

6 x &= 0xf; // only want the last 4 bits of x.

7 // Return the LSB, which is the parity.

8 return four_bit_parity_lookup(x) & 1;

9 }

10

11 // The LSB of kFourBitParityLookupTable is the parity of 0,

12 // next bit is parity of 1, followed by the parity of 2, etc.

13

14 const int kFourBitParityLookupTable = 0x6996; // = 0b0110100110010110.

15

16 short four_bit_parity_lookup(int x) {

17 return kFourBitParityLookupTable >> x;

18 }

Problem 5.2, pg. 44 : Given two positive integers x and y, how would you compute x/y if
the only operators you can use are addition, subtraction, and shifting?

Solution 5.2: We can use the following recursion:

x
y

=

 0, if x < y;
1 +

(x−y)
y , otherwise.
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This is not efficient by itself, but we can improve it by computing the largest k such

that 2k y ≤ x, in which case the recursive step is 2k +
(x−2k y)

y . Note that 2k y can be
computed by left-shifting y by k.

Let n be the number of bits needed to represent x. Assume x ≥ y. Each iteration
reduces the dividend in the recursive call by at least half, so there are O(n) recursive
calls. If the largest k such that 2k y ≤ x is computed by iterating through k, each call
has time complexityO(n). This leads to anO(n2) algorithm. The time complexity can
be improved to O(n log n) by using binary search to find the largest k.

1 unsigned divide_x_y(unsigned x, unsigned y) {

2 unsigned res = 0;

3 while (x >= y) {

4 int power = 1;

5 // Checks (y << power) >= (y << (power - 1)) to prevent potential

6 // overflow of unsigned.

7 while ((y << power) >= (y << (power - 1)) && (y << power) <= x) {

8 ++power;

9 }

10

11 res += 1U << (power - 1);

12 x -= y << (power - 1);

13 }

14 return res;

15 }

Problem 5.3, pg. 44 : Write a function that performs base conversion. Specifically, the input
is an integer base b1, a string s, representing an integer x in base b1, and another integer base
b2; the output is the string representing the integer x in base b2. Assume 2 ≤ b1, b2 ≤ 16.
Use “A” to represent 10, “B” for 11, . . . , and “F” for 15.

Solution 5.3: We can use a reductionist approach to solve this problem. We have
seen how to convert integers to strings in Solution 7.1 on Page 115; this approach
works for any base. Converting from strings is the reverse of this process. Therefore,
we can convert base b1 string s to a variable x of integer type, and then convert x to a
base b2 string ans.For example, if the string is “615”, b1 = 7 and b2 = 13, then x = 306,
and the final result is “1A7”.

1 string convert_base(const string& s, int b1, int b2) {

2 bool neg = s.front() == ’-’;

3 int x = 0;

4 for (size_t i = (neg == true ? 1 : 0); i < s.size(); ++i) {

5 x *= b1;

6 x += isdigit(s[i]) ? s[i] - ’0’ : s[i] - ’A’ + 10;

7 }

8

9 string ans;

10 while (x) {

11 int r = x % b2;

12 ans.push_back(r >= 10 ? ’A’ + r - 10 : ’0’ + r);

13 x /= b2;

14 }
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15

16 if (ans.empty()) { // special case: s is 0.

17 ans.push_back(’0’);

18 }

19 if (neg) { // s is a negative number.

20 ans.push_back(’-’);

21 }

22 reverse(ans.begin(), ans.end());

23 return ans;

24 }

The time complexity is O(n(1 + logb2
b1)), where n is the length of s. The reasoning is

as follows. First, we perform n multiply and adds to get x from s. Then we perform
logb2

x multiply and adds to get the result. The value x is upper-bounded by b1
n, so

logb2
b1

n = n logb2
b1.

Problem 5.4, pg. 44 : How would you implement a random number generator that generates
a random integer i in [a, b], given a random number generator that produces either zero or
one with equal probability? All generated values should have equal probability. What is the
run time of your algorithm?

Solution 5.4: Basically, we want to produce a random integer in [0, b − a]. Let
t = b − a + 1. We can produce a random integer in [0, t − 1], as follows. Let i be the
least integer such that t ≤ 2i.

If t is a power of 2, say t = 2i, then all we need are i calls to the zero-one valued
random number generator—the i bits from the calls encode an i bit integer in [0, t−1],
and all such numbers are equally likely; so, we can use this integer.

If t is not a power of 2, the i calls may or may not encode an integer in the range 0
to t − 1. If the number is in the range, we return it; since all the numbers are equally
likely, the result is correct. If the number is outside the range [0, t − 1], we try again.

1 int uniform_random_a_b(int a, int b) {

2 int t = b - a + 1, res;

3 do {

4 res = 0;

5 for (int i = 0; (1 << i) < t; ++i) {

6 // zero_one_random() is the system-provided random number generator.

7 res = (res << 1) | zero_one_random();

8 }

9 } while (res >= t);

10 return res + a;

11 }

The time complexity of such randomized algorithms is usually described in terms
of average time. The probability of having to try again is less than 1

2 since t >
2i−1. Therefore, the probability that we take exactly k steps before succeeding is
at most 1

2 (1 − 1
2 )k−1 = 1

2
k. This implies the expected number of trials is less than

1 1
2 + 2( 1

2 )2 + 3( 1
2 )3 + · · · . Differentiating the identity 1

1−x = 1 + x + x2 + x3 + · · · , yields
the identity 1

(1−x)2 = 1 + 2x + 3x2 + 4x3 + · · · . Multiplying both sides by x demonstrate
that x

(1−x)2 = x + 2x2 + 3x3 + 4x4 + · · · . Substituting 1
2 for x in this last identity proves
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that 1( 1
2 ) + 2( 1

2 )2 + 3( 1
2 )3 + · · · =

1
2

(1− 1
2 )2 = 2. Therefore, the expected number of trials

is less than 2 and consequently the expected running time is O(1). (Note that this is
independent of t, i.e., it is not the running time averaged over all inputs.)

Problem 5.5, pg. 44 : Which doors are open after the 500-th person has walked through?

Solution 5.5: As described on Page 33, analyzing a few concrete examples suggests
that, independent of n, door k will be open iff k is a perfect square. The rigorous
justification for this is as follows.

If the number of times a door’s state changes is odd, it will be open; otherwise it
is closed. Therefore, the number of times door k’s state changes equals the number
of divisors of k. From the concrete example analysis, we are led to the conjecture that
the number of divisors of k is odd iff k is a perfect square. Note that if d divides k, then
k/d also divides k. Therefore, we can uniquely pair off divisors of k, other than

√
k (if

it is an integer). Hence, when
√

k is not an integer, k has an even number of divisors.
When

√
k is an integer, it is the only divisor of k that cannot be uniquely paired off

with another divisor, implying k has an odd number of divisors. By definition,
√

k is
an integer iff k is a perfect square, proving the result.

This check can be performed by squaring b
√

ic and comparing the result with i,
i.e., in O(1) time.

1 bool is_door_open(int i) {

2 double sqrt_i = sqrt(i);

3 int floor_sqrt_i = floor(sqrt_i);

4 return floor_sqrt_i * floor_sqrt_i == i;

5 }

Variant 5.5.1 : There are 25 people seated at a round table. Each person has two
cards. Each card has a number from 1 to 25. Each number appears on exactly two
cards. Each person passes the card with the smaller number to the person on his left.
This is done iteratively in a synchronized fashion. Show that eventually someone
will have two cards with identical numbers.

Problem 5.6, pg. 44 : Design an efficient algorithm for computing the GCD of two numbers
without using multiplication, division or the modulus operators.

Solution 5.6: The straightforward algorithm is based on the recursion GCD(x, y) =

(x == y)?x : GCD(max(x, y) − min(x, y),min(x, y)). It does not use multiplication,
division or modulus, but is very slow—its time complexity is O(max(x, y)), which
is exponential in the size of the input. (Expressed in binary, the numbers x and y,
require dlg xe and dlg ye bits respectively.) As an example, if the input is x = 2n,
y = 2, the algorithm makes 2n−1 recursive calls. (The straightforward algorithm can
be improved to linear time complexity, but this entails performing integer division.)

Our solution is also based on recursion, the base case being where one of the
arguments is 0. Otherwise, we check if none, one, or both numbers are even. If both
are even, we compute the GCD of these numbers divided by 2, and return that result
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times 2; if one is even, we half it, and return the GCD of the resulting pair; if both
are odd, we subtract the smaller from the larger and return the GCD of the resulting
pair. Multiplication by 2 is trivially implemented with a single left shift. Division by
2 is done with a single right shift.

Note that the last step leads to a recursive call with one even and one odd number.
Consequently, in every two calls, we reduce the combined bit length of the two
numbers by at least one, meaning that the time complexity is proportional to the sum
of the number of bits in x and y, i.e., O(log x + log y)).

1 long long GCD(long long x, long long y) {

2 if (x == 0) {

3 return y;

4 } else if (y == 0) {

5 return x;

6 } else if (!(x & 1) && !(y & 1)) { // x and y are even.

7 return GCD(x >> 1, y >> 1) << 1;

8 } else if (!(x & 1) && y & 1) { // x is even, and y is odd.

9 return GCD(x >> 1, y);

10 } else if (x & 1 && !(y & 1)) { // x is odd, and y is even.

11 return GCD(x, y >> 1);

12 } else if (x > y) { // both x and y are odd, and x > y.

13 return GCD(x - y, y);

14 }

15 return GCD(x, y - x); // both x and y are odd, and x <= y.

16 }

Problem 6.1, pg. 46 : Write a function that takes an array A of length n and an index i into
A, and rearranges the elements such that all elements less than A[i] appear first, followed by
elements equal to A[i], followed by elements greater than A[i]. Your algorithm should have
O(1) space complexity and O(n) time complexity.

Solution 6.1: This problem is conceptually straightforward: maintain four groups,
bottom (elements less than pivot), middle (elements equal to pivot), unclassified, and
top (elements greater than pivot). These groups are stored in contiguous order in
A. To make this partitioning run in O(1) space, we use smaller, equal, and larger

pointers to track these groups in the following way:
− bottom: stored in subarray A[0 : smaller − 1].
− middle: stored in subarray A[smaller : equal − 1].
− unclassified: stored in subarray A[equal : larger].
− top: stored in subarray A[larger + 1 : n − 1].

We explore elements of unclassified in order, and classify the element into one of
bottom, middle, and top groups according to the relative order between the incoming
unclassified element and pivot. Each iteration decreases the size of unclassified group
by 1, and the time spent within each iteration is O(1), implying the time complexity
is O(n).

The implementation is short but tricky, pay attention to the movements of pointers.

1 void dutch_flag_partition(int pivot_index , vector<int>* A) {

2 int pivot = (*A)[pivot_index];
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3 /**

4 * Keep the following invariants during partitioning:

5 * bottom group: (*A)[0 : smaller - 1].

6 * middle group: (*A)[smaller : equal - 1].

7 * unclassified group: (*A)[equal : larger].

8 * top group: (*A)[larger + 1 : A->size() - 1].

9 */

10 int smaller = 0, equal = 0, larger = A->size() - 1;

11 // When there is any unclassified element.

12 while (equal <= larger) {

13 // (*A)[equal] is the incoming unclassified element.

14 if ((*A)[equal] < pivot) {

15 swap((*A)[smaller++], (*A)[equal++]);

16 } else if ((*A)[equal] == pivot) {

17 ++equal;

18 } else { // (*A)[equal] > pivot.

19 swap((*A)[equal], (*A)[larger --]);

20 }

21 }

22 }

ε-Variant 6.1.1 : Assuming that keys take one of three values, reorder the array so
that all objects with the same key appear together. The order of the subarrays is not
important. For example, both Figures 6.1(b) and 6.1(c) on Page 47 are valid answers
for Figure 6.1(a) on Page 47. Use O(1) additional space and O(n) time.

ε-Variant 6.1.2 : Given an array A of n objects with keys that takes one of four values,
reorder the array so that all objects that have the same key appear together. Use O(1)
additional space and O(n) time.

ε-Variant 6.1.3 : Given an array A of n objects with Boolean-valued keys, reorder the
array so that objects that have the key false appear first. Use O(1) additional space
and O(n) time.

Variant 6.1.4 : Given an array A of n objects with Boolean-valued keys, reorder the
array so that objects that have the key false appear first. The relative ordering of
objects with key true should not change. Use O(1) additional space and O() time.

Problem 6.2, pg. 47 : Design an algorithm that takes a sequence of n three-dimensional
coordinates to be traversed, and returns the minimum battery capacity needed to complete
the journey. The robot begins with a fully charged battery.

Solution 6.2: Suppose the three-dimensions correspond to x, y, and z, with z being
the vertical dimension. Since energy usage depends on the change in height of the
robot, we can ignore the x and y coordinates. Suppose the points where the robot
goes in successive order have z coordinates z0, . . . , zn−1. Assume that the battery
capacity is such that with the fully charged battery, the robot can climb B meters.
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The robot will run out of energy iff there exist integers i and j such that i < j and
z j−zi > B, i.e., to go from Point i to Point j, the robot has to climb more than B meters.
Therefore, we would like to pick B such that for any i < j, we have B ≥ z j − zi.

We developed several algorithms for this problem in the introduction. Specifically,
on Page 2 we showed how to compute the minimum B in O(n) time by keeping the
running minimum as we do a sweep through the array. Here is an implementation.

1 int find_battery_capacity(const vector<int>& h) {

2 int min_height = numeric_limits <int>::max(), capacity = 0;

3 for (const int &height : h) {

4 capacity = max(capacity, height - min_height);

5 min_height = min(min_height , height);

6 }

7 return capacity;

8 }

ε-Variant 6.2.1 : Let A be an array of integers. Find the length of a longest subarray
all of whose entries are equal.

Problem 6.3, pg. 47 : For each of the following, A is an integer array of length n.
(1.) Compute the maximum value of (A[ j0] −A[i0]) + (A[ j1] −A[i1]), subject to i0 < j0 <

i1 < j1.
(2.) Compute the maximum value of

∑k−1
t=0 (A[ jt] − A[it]), subject to i0 < j0 < i1 < j1 <

· · · < ik−1 < jk−1. Here k is a fixed input parameter.
(3.) Repeat Problem (2.) when k can be chosen to be any value from 0 to bn/2c.

Solution 6.3: The brute-force algorithm for (1.) has complexityO(n4). The complexity
can be improved toO(n2) by applying theO(n) algorithm to A[0 : j] and A[ j+1 : n−1]
for each j ∈ [1,n−2]. However, we can actually solve (1.) inO(n) time by performing
a forward iteration and storing the best solution for A[0 : j], j ∈ [1,n− 1]. We then do
a reverse iteration, computing the best solution for A[ j : n−1], j ∈ [0,n−2], which we
combine with the result from the forward iteration. The additional space complexity
is O(n), which is the space used to store the best solutions for the subarrays.

Here is a straightforward algorithm for (2.). Iterate over j from 1 to k and iterate
through A, recording for each index i the best solution for A[0 : i] with j pairs. We
store these solutions in an auxiliary array of length n. The overall time complexity
will be O(kn2); by reusing the arrays, we can reduce the additional space complexity
to O(n).

We can improve the time complexity toO(kn), and the additional space complexity
to O(k) as follows. Define B j

i to be the most money you can have if you must make
j− 1 buy-sell transactions prior to i and buy at i. Define S j

i to be the maximum profit
achievable with j buys and sells with the j-th sell taking place at i. Then the following
mutual recurrence holds:

S j
i = A[i] + max

i′<i
B j

i′

B j
i = max

i′<i
S j−1

i′ − A[i]
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The key to achieving an O(kn) time bound is the observation that computing B
and S requires computing maxi′<i B j−1

i′ and maxi′<i S j−1
i′ . These two quantities can be

computed in constant time for each i and j with a conditional update. In code:

1 int max_k_pairs_profits(const vector<int>& A, int k) {

2 vector<int> k_sum(k << 1, numeric_limits <int>::min());

3 for (int i = 0; i < A.size(); ++i) {

4 vector<int> pre_k_sum(k_sum);

5 for (int j = 0, sign = -1; j < k_sum.size() && j <= i; ++j, sign *= -1) {

6 int diff = sign * A[i] + (j == 0 ? 0 : pre_k_sum[j - 1]);

7 k_sum[j] = max(diff, pre_k_sum[j]);

8 }

9 }

10 return k_sum.back(); // returns the last selling profits as the answer.

11 }

Note that the improved solution to (2.) on the preceding page specialized to k = 2
strictly subsumes the solution to (1.) on the previous page.

Surprisingly, (3.) on the preceding page can be solved almost trivially. Define a
locally maximum subarray of A to be a subarray A[i : j] such that (1.) all elements within
the subarray are equal, (2.) if i > 0, A[i] > A[i− 1], and (3.) if j < n− 1, A[ j] > A[ j + 1].
A locally minimum subarray is defined similarly. Call an index i a local minimum if
A[i] is less than or equal to its neighbors, and a local maximum if A[i] is greater than
or equal to its neighbors. An optimum solution for (3.) on the previous page then is
to buy at every local minimum that begins a locally minimum subarray and sell at
every local maximum that ends a locally maximum subarray. A local minimum at
the end of the array has to be special-cased as is a local maximum at the start of the
array. The code below implements this approach.

1 int max_profit_unlimited_pairs(const vector<int>& A) {

2 if (A.size() <= 1) {

3 return 0;

4 }

5

6 int profit = 0, buy = A.front();

7 for (int i = 1; i < A.size() - 1; ++i) {

8 if (A[i + 1] < A[i] && A[i - 1] <= A[i]) { // sell at local maximum.

9 profit += A[i] - buy;

10 buy = A[i + 1];

11 } else if (A[i + 1] >= A[i] && A[i - 1] > A[i]) { // buy at local minimum

12 buy = A[i];

13 }

14 }

15

16 if (A.back() > buy) {

17 profit += A.back() - buy;

18 }

19 return profit;

20 }

The time complexity is O(n) since we spend O(1) per index.
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Problem 6.4, pg. 48 : Let A be an array of n distinct elements. Design an algorithm that
returns a subset of k elements of A. All subsets should be equally likely. Use as few calls to
the random number generator as possible and use O(1) additional storage. You can return
the result in the same array as input.

Solution 6.4: The problem is trivial when k = 1—we simply make one call to the
random number generator, take the returned r value mod n. We can swap A[n − 1]
with A[r]; A[n − 1] then holds the result.

For k > 1, we start by choosing one element at random as above and we now
repeat the same process with the n − 1 element subarray A[0 : n − 2]. Eventually, the
random subset occupies the slots A[n − k : n − 1] and the remaining elements are in
the first n − k slots.

The algorithm clearly runs in O(1) space. To demonstrate that all the subsets are
equally likely, we show something stronger, namely that all permutations of size k
are equally likely.

Define a sequence of m elements of S with no repetitions to be an m-permutation
of S. It is easy to check that the number of m-permutations of a set of n elements is

n!
(n−m)! .

The induction hypothesis now is that after iteration m, the subarray A[n−m : n−1]
contains each possible m-permutation with probability (n−m)!

n! .
The base case holds since for m = 1, any element is equally likely to be selected.
Suppose the inductive hypothesis holds for m = l. Now we study m = l + 1.

Consider a particular (l + 1)-permutation, say 〈α1, . . . , αl+1〉. This consists of a single
element α1 followed by the l-permutation 〈α2, . . . , αl+1〉. Let E1 be the event that α1

is selected in iteration l + 1 and E2 be the event that the first l iterations produced
〈α2, . . . , αl+1〉. The probability of 〈α1, . . . , αl+1〉 resulting after iteration l + 1 is simply
Pr(E1 ∩ E2) = Pr(E1 | E2)Pr(E2). By the inductive hypothesis, the probability of
permutation 〈α2, . . . , αl+1〉 is (n−l)!

n! . The probability Pr(E1|E2) = 1
n−l since the algorithm

selects from elements in the subarray A[0 : n− l−1] with equal probability. Therefore

Pr(E1 ∩ E2) = Pr(E1|E2)Pr(E2) =
1

n − l
(n − l)!

n!
=

(n − l − 1)!
n!

and induction goes through.
The algorithm generates all random k-permutations with equal probability, from

which it follows that all subsets of size k are equally likely.
The algorithm just described makes k calls to the random number generator.

When k is bigger than n
2 , we can optimize by computing a subset of n − k elements

to remove from the set. For example, when k = n − 1, this replaces n − 1 calls to the
random number generator with a single call. (Of course, while all subsets of size m
are equally likely with this optimization, all m-permutations are not.

1 vector<int> offline_sampling(vector<int> A, int k) {

2 default_random_engine gen((random_device())()); // random num generator.

3 for (int i = 0; i < k; ++i) {

4 // Generate a random int in [i, A.size() - 1].

5 uniform_int_distribution <int> dis(i, A.size() - 1);
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6 swap(A[i], A[dis(gen)]);

7 }

8 A.resize(k);

9 return A;

10 }

Variant 6.4.1 : The rand() function in the standard C library returns a uniformly ran-
dom number in [0, RAND_MAX− 1]. Does rand() mod n generate a number uniformly
distributed [0,n − 1]?

Problem 6.5, pg. 48 : Design an algorithm that reads a sequence of packets and maintains
a uniform random subset of size k of the read packets when the n ≥ k-th packet is read.

Solution 6.5: We store the first k packets. Consequently, we select the n-th packet
to add to our subset with probability k

n . If we do choose it, we select an element
uniformly at random to eject from the subset.

To show that the algorithm works correctly, we use induction on the number of
packets that have been read. Specifically, the induction hypothesis is that all k-sized
subsets are equally likely after n ≥ k packets have been read.

The number of k-size subsets is
(n

k

)
, implying the probability of any k-size subset

should be 1
(n

k)
.

For the base case, n = k, there is exactly one subset of size k which is what the
algorithm computes.

Assume the induction hypothesis holds for n > k. Consider the (n + 1)-th packet.
The probability of a k-size subset that does not include the (n + 1)-th packet is the
probability that the k-size subset was selected after reading the n-th packet and the
(n + 1)-th packet was not selected. These two events are independent, which means
the probability of selecting such a subset is

1(n
k

) (
1 −

k
n + 1

)
=

k!(n − k)!
n!

(
n + 1 − k

n + 1

)
=

k!(n + 1 − k)!
(n + 1)!

.

This simplifies to 1
(n+1

k ) , so induction goes for subsets excluding the n + 1 element.

The probability of a k-size subset H that includes the (n + 1)-th packet pn+1 can be
computed as follows. Let G be a k-size subset of the first n packets. The only way we
can get from G to H is if G contains H \ {pn+1}. Let G∗ be such a subset; let {q} = G \G∗.

The probability of going from G to H is the probability of selecting pn+1 and
dropping q, which is equal to k

n+1
1
k . There exist −(k−1) candidate subsets for G∗, each

with probability 1
(n

k)
(by the inductive hypothesis) which means that the probability

of H is given by

k
n + 1

1
k

(n + (k − 1))
1(n
k

) =
(n + 1 − k)(n − k)!k!

(n + 1)n!
=

1(n+1
k

) ,
so induction goes through for subsets including the (n + 1)-th element.
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1 vector<int> reservoir_sampling(istringstream* sin, int k) {

2 int x;

3 vector<int> R;

4 // Store the first k elements.

5 for (int i = 0; i < k && *sin >> x; ++i) {

6 R.emplace_back(x);

7 }

8

9 // After the first k elements.

10 int element_num = k;

11 while (*sin >> x) {

12 default_random_engine gen((random_device())()); // random num generator.

13 // Generate a random int in [0, element_num].

14 uniform_int_distribution <int> dis(0, element_num++);

15 int tar = dis(gen);

16 if (tar < k) {

17 R[tar] = x;

18 }

19 }

20 return R;

21 }

The time complexity is proportional to the number of elements in the stream, since
we spend O(1) time per element. The space complexity is O(k).

Problem 7.1, pg. 49 : Implement string/integer inter-conversion functions. Use the follow-
ing function signatures: String intToString(int x) and int stringToInt(String
s).

Solution 7.1: For a positive integer x, we iteratively divide x by 10, and record the
remainder till we get to 0. This yields the result from the least significant digit, and
needs to be reversed. If x is negative, we record that, and negate x, adding a ’-’
afterward. If x is 0, our code breaks out of the iteration without writing any digits,
in which case we need to explicitly set a 0.

1 string intToString(int x) {

2 bool is_negative;

3 if (x < 0) {

4 x = -x, is_negative = true;

5 } else {

6 is_negative = false;

7 }

8

9 string s;

10 while (x) {

11 s.push_back(’0’ + x % 10);

12 x /= 10;

13 }

14 if (s.empty()) {

15 return {"0"}; // x is 0.

16 }

17

18 if (is_negative) {
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19 s.push_back(’-’);

20 }

21 reverse(s.begin(), s.end());

22 return s;

23 }

24

25 // We define the valid strings for this function as those matching regexp

26 // -?[0-9]+.

27 int stringToInt(const string& s) {

28 // "-" starts as a valid integer, but has no digits.

29 if (s == "-") {

30 throw invalid_argument("illegal input");

31 }

32

33 bool is_negative = s[0] == ’-’;

34 int x = 0;

35 for (int i = is_negative; i < s.size(); ++i) {

36 if (isdigit(s[i])) {

37 x = x * 10 + s[i] - ’0’;

38 } else {

39 throw invalid_argument("illegal input");

40 }

41 }

42 return is_negative ? -x : x;

43 }

Problem 7.2, pg. 49 : Implement a function for reversing the words in a string s. Your
function should use O(1) space.

Solution 7.2: The code for computing the position for each character in a single pass
is fairly complex. However, a two stage iteration is easy. In the first step, reverse the
entire string and in the second step, reverse each word. For example, “ram is costly”
transforms to “yltsoc si mar”, which transforms to “costly is ram”.

1 void reverse_words(string* s) {

2 // Reverse the whole string first.

3 reverse(s->begin(), s->end());

4

5 size_t start = 0, end;

6 while ((end = s->find(" ", start)) != string::npos) {

7 // Reverse each word in the string.

8 reverse(s->begin() + start, s->begin() + end);

9 start = end + 1;

10 }

11 // Reverse the last word.

12 reverse(s->begin() + start, s->end());

13 }

Since we spend O(1) per character, the time complexity is O(n), where n is the length
of s.
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Problem 7.3, pg. 50 : Write a function which takes as input a phone number, specified
as a string of digits, return all possible character sequences that correspond to the phone
number. The cell phone keypad is specified by a mapping M that takes a digit and returns
the corresponding set of characters. The character sequences do not have to be legal words or
phrases.

Solution 7.3: Recursion is natural. Let P be an n-digit number sequence. Assume
these digits are indexed starting at 0, i.e., P[0] is the first digit. Let S be a character
sequence corresponding to the first k digits of P. We can generate all length n character
sequences corresponding to P that have S as their prefix as follows. If k = n, there is
nothing to do. Otherwise, we recurse on each length-k + 1 sequence of the form Sx,
for each x ∈M(P[k]).

1 void phone_mnemonic(const string &num) {

2 string ans(num.size(), 0);

3 phone_mnemonic_helper(num, 0, &ans);

4 }

5

6 const int kNumTelDigits = 10;

7

8 const array<string, kNumTelDigits > M = {{"0", "1", "ABC", "DEF", "GHI",

9 "JKL", "MNO", "PQRS", "TUV",

10 "WXYZ"}};

11

12 void phone_mnemonic_helper(const string &num, int d, string* ans) {

13 if (d == num.size()) { // get enough characters and output answer.

14 cout << *ans << endl;

15 } else {

16 for (const char &c : M[num[d] - ’0’]) { // try all combinations.

17 (*ans)[d] = c;

18 phone_mnemonic_helper(num, d + 1, ans);

19 }

20 }

21 }

Since there are no more than 4 possible characters for each digit, the number of
recursive calls T(n) satisfies T(n) ≤ 4T(n − 1), which solves to T(n) = O(4n). For the
function calls that entail recursion, the time spent within the function, not including
the recursive calls, is O(1). For the base case, printing a sequence of length n takes
time O(n). Therefore, the time complexity is O(4nn).

Variant 7.3.1 : Solve the same problem without using recursion.

Problem 8.1, pg. 52 : Write a function that takes L and F, and returns the merge of L
and F. Your code should use O(1) additional storage—it should reuse the nodes from the
lists provided as input. Your function should use O(1) additional storage, as illustrated in
Figure 8.3 on Page 52. The only field you can change in a node is next.

Solution 8.1: We traverse the lists, using one pointer per list, each initialized to
the list head. We compare the contents of the pointer—the pointer with the lesser
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contents is to be added to the end of the result and advanced. If either pointer is
null, we add the sublist pointed to by the other to the end of the result. The add can
be performed by a single pointer update—it does not entail traversing the sublist.

1 shared_ptr <ListNode<int>> merge_sorted_linked_lists(

2 shared_ptr <ListNode<int>> F, shared_ptr <ListNode<int>> L) {

3 shared_ptr <ListNode<int>> sorted_head = nullptr, tail = nullptr;

4

5 while (F && L) {

6 append_node_and_advance(&sorted_head , &tail, F->data < L->data ? &F : &L);

7 }

8

9 // Appends the remaining nodes of F.

10 if (F) {

11 append_node(F, &sorted_head , &tail);

12 }

13 // Appends the remaining nodes of L.

14 if (L) {

15 append_node(L, &sorted_head , &tail);

16 }

17 return sorted_head;

18 }

19

20 void append_node_and_advance(shared_ptr <ListNode<int>>* head,

21 shared_ptr <ListNode<int>>* tail,

22 shared_ptr <ListNode<int>>* node) {

23 append_node(*node, head, tail);

24 *node = (*node)->next; // advances node.

25 }

26

27 void append_node(const shared_ptr <ListNode<int>>& node,

28 shared_ptr <ListNode<int>>* head,

29 shared_ptr <ListNode<int>>* tail) {

30 *head ? (*tail)->next = node : *head = node;

31 *tail = node; // resets tail to the last node.

32 }

The worst case, from a runtime perspective, corresponds to the case when the lists
are of comparable length, so the time complexity is O(nL + nF), where nL and nF are
the lengths of lists L and F, respectively. (In the best case, one list is much shorter
than the other and all its entries appear at the beginning of the merged list.)

ε-Variant 8.1.1 : Solve the same problem when the lists are doubly linked.

Problem 8.2, pg. 52 : Give a linear time nonrecursive function that reverses a singly linked
list. The function should use no more than constant storage beyond that needed for the list
itself.

Solution 8.2: The natural way of implementing the reversal is through recursion.
This approach has (n) time complexity, since O(1) time is spent within each call, and
one node is moved to its correct location.
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1 shared_ptr <ListNode<int>> reverse_linked_list(

2 const shared_ptr <ListNode<int>>& head) {

3 if (!head || !head->next) {

4 return head;

5 }

6

7 shared_ptr <ListNode<int>> new_head = reverse_linked_list(head->next);

8 head->next->next = head;

9 head->next = nullptr;

10 return new_head;

11 }

However, the recursive approach implicitly usesO(n) space on the stack. The function
is not tail recursive, which precludes compilers from automatically converting the
function to an iterative one.

Consider the following (nonrecursive) solution: traverse the list with two pointers,
and update the trailing pointer’s next field. It uses O(1) additional storage, and has
(n) time complexity.

1 shared_ptr <ListNode<int>> reverse_linked_list(

2 const shared_ptr <ListNode<int>>& head) {

3 shared_ptr <ListNode<int>> prev = nullptr, curr = head;

4 while (curr) {

5 shared_ptr <ListNode<int>> temp = curr->next;

6 curr->next = prev;

7 prev = curr;

8 curr = temp;

9 }

10 return prev;

11 }

Problem 8.3, pg. 52 : Given a reference to the head of a singly linked list L, how would
you determine whether L ends in a null or reaches a cycle of nodes? Write a function that
returns null if there does not exist a cycle, and the reference to the start of the cycle if a cycle
is present. (You do not know the length of the list in advance.)

Solution 8.3: This problem has several solutions. If space is not an issue, the simplest
approach is to explore nodes via the next field starting from the head and storing
visited nodes in a hash table—a cycle exists iff we visit a node already in the hash
table. If no cycle exists, the search ends at the tail (often represented by having the
next field set to null). This solution requires O(n) space, where n is the number of
nodes in the list.

In some languages, e.g., C, the next field is a pointer. Typically, for performance
reasons related to the memory subsystem on a processor, memory is allocated on
word boundaries, and (at least) two of the LSBs in the next pointer are 0. Bit fiddling
can be used to set the LSB on the next pointer to mark whether a node as been visited.
This approach has the disadvantage of changing the data structure—these updates
can be undone later.
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Another approach is to reverse the linked list, in the manner of Solution 8.2 on
Page 118. If the head is encountered during the reversal, it means there is a cycle;
otherwise we will get to the tail. Although this approach requires no additional
storage, and runs in O(n) time, it does modify the list.

A naïve approach that does not use additional storage and does not modify the
list is to traverse the list in two loops—the outer loop traverses the nodes one-by-
one, and the inner loop starts from the head, and traverses m nodes, where m is the
number of nodes traversed in the outer loop. If the node being visited by the outer
loop is visited twice, a loop has been detected. (If the outer loop encounters the end
of the list, no cycle exists.) This approach has O(n2) time complexity.

This idea can be made to work in linear time—use a slow pointer, slow, and a fast
pointer, fast, to traverse the list. In each iteration, advance slow by one and fast

by two. The list has a cycle if and only if the two pointers meet. The reasoning is
as follows. Number the nodes in the cycle by assigning first node encountered the
index 0. Let C be the total number of nodes in the cycle. If the fast pointer reaches
the first node at iteration F, at iteration i ≥ F, it will be at node 2(i − F) mod C. If the
slow pointer reaches the first node at iteration S, at iteration i ≥ S, it will be at node
(i − S) mod C. The difference between the pointer locations after the slow pointer
reaches the first node in the cycle is 2(i − F) − (i − S) mod C = i − (2F − S) mod C. As
i increases by one in each iteration, the equation (i − (2F − S)) mod C = 0 must have
a solution.

Now, assuming that we have detected a cycle using the above method, we find
the start of the cycle, by first calculating the cycle length. We do this by freezing the
slow pointer, and counting the number of times we have to advance the fast pointer
to come back to the slow pointer. Consequently, we set both slow and fast pointers
to the head. Then we advance fast by the length of the cycle, then move both slow

and fast one at a time. The start of the cycle is located at the node where these two
pointers meet again.

The code to do this traversal is quite simple:

1 shared_ptr <ListNode<int>> has_cycle(const shared_ptr <ListNode<int>>& head) {

2 shared_ptr <ListNode<int>> fast = head, slow = head;

3

4 while (slow && slow->next && fast && fast->next && fast->next->next) {

5 slow = slow->next, fast = fast->next->next;

6 if (slow == fast) { // there is a cycle.

7 // Calculates the cycle length.

8 int cycle_len = 0;

9 do {

10 ++cycle_len;

11 fast = fast->next;

12 } while (slow != fast);

13

14 // Tries to find the start of the cycle.

15 slow = head, fast = head;

16 // Fast pointer advances cycle_len first.

17 while (cycle_len --) {

18 fast = fast->next;
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19 }

20 // Both pointers advance at the same time.

21 while (slow != fast) {

22 slow = slow->next, fast = fast->next;

23 }

24 return slow; // the start of cycle.

25 }

26 }

27 return nullptr; // no cycle.

28 }

Its time complexity is O(F) + O(C) = O(n)—O(F) for both pointers to reach the cycle,
and O(C) for them to overlap once the slower one enters the cycle.

ε-Variant 8.3.1 : The following program purports to compute the beginning of the
cycle without determining the length of the cycle; it has the benefit of being more
succinct than the code listed above. Is the program correct?

1 shared_ptr <ListNode<int>> has_cycle(const shared_ptr <ListNode<int>>& head) {

2 shared_ptr <ListNode<int>> fast = head, slow = head;

3

4 while (slow && slow->next && fast && fast->next && fast->next->next) {

5 slow = slow->next, fast = fast->next->next;

6 if (slow == fast) { // there is a cycle.

7 // Tries to find the start of the cycle.

8 slow = head;

9 // Both pointers advance at the same time.

10 while (slow != fast) {

11 slow = slow->next, fast = fast->next;

12 }

13 return slow; // slow is the start of cycle.

14 }

15 }

16 return nullptr; // means no cycle.

17 }

Problem 8.4, pg. 53 : Implement a function which takes as input a pointer to the head of a
postings list L, and returns a copy of the postings list. Your function should take O(n) time,
where n is the length of the postings list and should use O(1) storage beyond that required
for the n nodes in the copy. You can modify the original list, but must restore it to its initial
state before returning.

Solution 8.4: We do the copy in following three stages:
(1.) First we copy a node cx per node x in the original list, and when we do the

allocation, we set cx’s next pointer to x’s next pointer, then update x’s next
pointer to cx. (Note that this does not preclude us from traversing the nodes of
the original list.)

(2.) Then we update the jump field for each copied node cx; specifically, if y is x’s
jump field, we set cx’s jump field to cy, which is the copied node of y. (We can
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do this by traversing the nodes in the original list; note that cy is just y’s next
field.)

(3.) Now we set the next field for each x to its original value (which we get from
cx’s next field), and the next field for each cx to cn(x), where n(x) is x’s original
next node.

These three stages are illustrated in Figures 21.1(b) to 21.1(d) on this page.

L a b c d

(a) Initial list.

L a b c d

L′ a′ b′ c′ d′

(b) After Stage (1.).

L a b c d

L′ a′ b′ c′ d′

(c) After Stage (2.).

L a b c d

L′ a′ b′ c′ d′

(d) After Stage (3.).

Figure 21.1: Duplicating a postings list.

Code implementing the copy is given below.

1 shared_ptr <ListNode<int>> copy_postings_list(

2 const shared_ptr <ListNode<int>>& L) {

3 // Returns empty list if L is nullptr.

4 if (!L) {

5 return nullptr;

6 }

7

8 // 1st stage: Copies the nodes from L.

9 shared_ptr <ListNode<int>> p = L;

10 while (p) {

11 auto temp =

12 make_shared <ListNode<int>>(ListNode <int>{p->data, p->next, nullptr});

13 p->next = temp;

14 p = temp->next;

15 }

16

17 // 2nd stage: Updates the jump field.

18 p = L;

19 while (p) {

20 if (p->jump) {

21 p->next->jump = p->jump->next;

22 }

23 p = p->next->next;

24 }

25

26 // 3rd stage: Restores the next field.

27 p = L;
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28 shared_ptr <ListNode<int>> copied = p->next;

29 while (p->next) {

30 shared_ptr <ListNode<int>> temp = p->next;

31 p->next = temp->next;

32 p = temp;

33 }

34 return copied;

35 }

The time complexity is O(n), where n is the length of the list. The space complexity
is O(1), beyond the space allocated for the result.

Problem 9.1, pg. 54 : Design a stack that supports a max operation, which returns the
maximum value stored in the stack, and throws an exception if the stack is empty. Assume
elements are comparable. All operations must be O(1) time. If the stack contains n elements,
you can use O(n) space, in addition to what is required for the elements themselves.

Solution 9.1: A conceptually straightforward approach to tracking the maximum is
store pairs in a stack. The first component is the key being pushed; the second is the
largest value in the stack after the push is completed. When we push a value, the
maximum value stored at or below any of the entries below the entry just pushed
does not change. The pushed entry’s maximum value is simply the larger of the
value just pushed and the maximum prior to the push, which can be determined by
inspecting the maximum field of the element below. Since popping does not change
the values below, there is nothing special to be done for pop. Of course appropriate
checks have to be made to ensure the stack is not empty.

1 class Stack {

2 public:

3 bool empty() const { return s_.empty(); }

4

5 int max() const {

6 if (!empty()) {

7 return s_.top().second;

8 }

9 throw length_error("empty stack");

10 }

11

12 int pop() {

13 if (empty()) {

14 throw length_error("empty stack");

15 }

16 int ret = s_.top().first;

17 s_.pop();

18 return ret;

19 }

20

21 void push(int x) {

22 s_.emplace(x, std::max(x, empty() ? x : s_.top().second));

23 }

24

25 private:

ElementsOfProgrammingInterviews.com



124 Solution 9.1

26 stack<pair<int, int>> s_;

27 };

Each of the specified methods has time complexity O(1). The additional space com-
plexity is O(n), regardless of the stored keys.

Heuristically, the additional space required can be reduced by maintaining two
stacks, the primary stack, which holds the keys being pushed, and an auxiliary stack,
whose operation we now describe.

The top of the auxiliary stack holds a pair. The first component of the pair is the
maximum key in the primary stack. The second component is the number of times
that key appears in the primary stack.

Let m be the maximum key currently in the primary stack. There are three cases
to consider when a key k is pushed.
− k is smaller than m. The auxiliary stack is not updated.
− k is equal to m. We increment the second component of the pair stored at the

top of the auxiliary stack.
− k is greater than m. The pair (k, 1) is pushed onto the auxiliary stack.

There are two cases to consider when the primary stack is popped. Let k be the
popped key.
− k is less than m. The auxiliary stack is not updated.
− k is equal to m. We decrement the second component of the top of the auxiliary

stack. If its value becomes 0, we pop the auxiliary stack.
These operations are illustrated in Figure 21.2 on the next page.

1 class Stack {

2 public:

3 bool empty() const { return s_.empty(); }

4

5 int max() const {

6 if (!empty()) {

7 return aux_.top().first;

8 }

9 throw length_error("empty stack");

10 }

11

12 int pop() {

13 if (empty()) {

14 throw length_error("empty stack");

15 }

16 int ret = s_.top();

17 s_.pop();

18 if (ret == aux_.top().first) {

19 --aux_.top().second;

20 if (aux_.top().second == 0) {

21 aux_.pop();

22 }

23 }

24 return ret;

25 }

26

27 void push(int x) {
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28 s_.emplace(x);

29 if (!aux_.empty()) {

30 if (x == aux_.top().first) {

31 ++aux_.top().second;

32 } else if (x > aux_.top().first) {

33 aux_.emplace(x, 1);

34 }

35 } else {

36 aux_.emplace(x, 1);

37 }

38 }

39

40 private:

41 stack<int> s_;

42 stack<pair<int, int>> aux_;

43 };

The worst-case additional space complexity is O(n), which occurs when each key
pushed is greater than all keys in the primary stack. However, when the number
of distinct keys is small, or the maximum changes infrequently, the additional space
complexity is less, O(1) in the best case. The time complexity for each specified
method is still O(1).
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Figure 21.2: The primary and auxiliary stacks for the following operations: push(2), push(2),
push(1), push(4), push(5), push(5), push(3), pop(), pop(), pop(), pop(),
push(0), push(3). Both stacks are initially empty, and their progression is shown from left-to-
right, then top-to-bottom. The top of the auxiliary stack holds the maximum element in the stack, and
the number of times that element occurs in the stack. The auxiliary stack is denoted by aux.

Problem 9.2, pg. 55 : Given the root node r of a binary tree, print all the keys at r and its
descendants. The keys should be printed in the order of the corresponding nodes’ depths.
Specifically, all keys corresponding to nodes of depth d should appear in a single line, and the
next line should correspond to keys corresponding to nodes of depth d + 1. You cannot use
recursion. You may use a single queue, and constant additional storage. For example, you
should print
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314

6 6

271 561 2 271

28 0 3 1 28

17 401 257

641

for the binary tree in Figure 10.1 on Page 57.

Solution 9.2: We maintain a queue of nodes to process. Specifically the queue
contains nodes at depth l followed by nodes at depth l + 1. After all nodes at depth
l are processed, the head of the queue is a node at depth l + 1; processing this node
introduces nodes from depth l + 2 to the end of the queue. We use a count variable
that records the number of nodes at the depth of the head of the queue that remain to
be processed. When all nodes at depth l are processed, the queue consists of exactly
the set of nodes at depth l + 1, and count is updated to the size of the queue.

1 void print_binary_tree_depth_order(const unique_ptr <BinaryTreeNode <int>>& r) {

2 // Prevents empty tree.

3 if (!r) {

4 return;

5 }

6

7 queue<BinaryTreeNode <int>*> q;

8 q.emplace(r.get());

9 size_t count = q.size();

10 while (!q.empty()) {

11 cout << q.front()->data << ’ ’;

12 if (q.front()->left) {

13 q.emplace(q.front()->left.get());

14 }

15 if (q.front()->right) {

16 q.emplace(q.front()->right.get());

17 }

18 q.pop();

19 if (--count == 0) { // Finish printing nodes in the current depth.

20 cout << endl;

21 count = q.size();

22 }

23 }

24 }

Since each node is enqueued and dequeued exactly once, the time complexity isO(n)
where n is the number of nodes in the tree. The space complexity is O(m), where m
is the maximum number of nodes at a specific depth. This could be as high as O(n),
e.g., for a perfect binary tree (Page 58).

ε-Variant 9.2.1 : Write a function which takes as input a binary tree where each node
is labeled with an integer and prints all the node keys in top down, alternating left-
to-right and right-to-left order, starting from left-to-right. For example, you should
print
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314

6 6

271 561 2 271

28 1 3 0 28

17 401 257

641

for the binary tree in Figure 10.1 on Page 57.

ε-Variant 9.2.2 : Write a function which takes as input a binary tree where each node
is labeled with an integer and prints all the node keys in a bottom up, left-to-right
order. For example, if the input is the tree in Figure 10.1 on Page 57, your function
should print 641

17 401 257

28 0 3 1 28

271 561 2 271

6 6

314

Problem 9.3, pg. 55 : Implement a queue API using an array for storing elements. Your
API should include a constructor function, which takes as argument the capacity of the queue,
enqueue and dequeue functions, a size function, which returns the number of elements
stored, and implement dynamic resizing.

Solution 9.3: We use an array of length n to store up to n elements. We resize the
array by a factor of 2 each time we run out of space. The queue has a head field that
indexes the least recently inserted element, and a tail field, which is the index that
the next inserted element will be written to. We record the number of elements in
the queue with a count variable. Initially, head and tail are 0. When count = n and
a enqueue is attempted we resize. When count = 0 and a dequeue is attempted we
throw an exception.

1 class Queue {

2 public:

3 explicit Queue(size_t cap) : data_(cap) {}

4

5 void enqueue(int x) {

6 // Dynamically resizes due to data_.size() limit.

7 if (count_ == data_.size()) {

8 // Rearranges elements.

9 rotate(data_.begin(), data_.begin() + head_, data_.end());

10 head_ = 0, tail_ = count_; // resets head and tail.

11 data_.resize(data_.size() << 1);

12 }

13 // Performs enqueue.

14 data_[tail_] = x;

15 tail_ = (tail_ + 1) % data_.size(), ++count_;

16 }
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17

18 int dequeue() {

19 if (!count_) {

20 throw length_error("empty queue");

21 }

22 --count_;

23 int ret = data_[head_];

24 head_ = (head_ + 1) % data_.size();

25 return ret;

26 }

27

28 size_t size() const { return count_; }

29

30 private:

31 size_t head_ = 0, tail_ = 0, count_ = 0;

32 vector<int> data_;

33 };

The time complexity of each operation is O(1).
Alternative implementations are possible, e.g., we can avoid using count, and

instead use the difference between head and tail to determine the number of ele-
ments. In such an implementation we cannot store more than n − 1 elements, since
otherwise there is no way to differentiate a full queue from an empty one.

Problem 10.1, pg. 59 : Write a function that takes as input the root of a binary tree and
returns true or false depending on whether the tree is balanced. Use O(h) additional
storage, where h is the height of the tree.

Solution 10.1: Without the O(h) constraint the problem is trivial—we can compute
the height for the tree rooted at each node x recursively. The basic computation
is x.height = max(x.left.height, x.right.height) + 1, and in each step we check if the
difference in heights of the left and right children is greater than one. We can store
the heights in a hash table, or in a new field in the nodes. This entails O(n) storage
and O(n) time, where n is the number of nodes of the tree.

We can solve this problem using O(h) storage by implementing a get_height

function which takes a node x as an argument and returns an integer. This function
get_height returns −2 if the node is unbalanced; otherwise it returns the height of
the subtree rooted at that node. The implementation of get_height is as follows. If x
is null, return −1. Otherwise run get_height on the left child. If the returned value
l is −2, node x is not balanced; return −2. Call get_height on x’s right child; let the
returned value be r. If r is −2 or |l − r| > 1 return −2, otherwise return max(l, r) + 1.

The function get_height implements a postorder traversal with some calls being
eliminated because of early detection of unbalance. The function call stack corre-
sponds to a sequence of calls from the root through the unique path to the current
node, and the stack height is therefore bounded by the height of the tree, leading
to an O(h) space bound. The time complexity is the same as that for a postorder
traversal, namely O(n).

1 bool is_balanced_binary_tree(const unique_ptr <BinaryTreeNode <int>>& T) {
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2 return get_height(T) != -2;

3 }

4

5 int get_height(const unique_ptr <BinaryTreeNode <int>>& T) {

6 if (!T) {

7 return -1; // base case.

8 }

9

10 int l_height = get_height(T->left);

11 if (l_height == -2) {

12 return -2; // left subtree is not balanced.

13 }

14 int r_height = get_height(T->right);

15 if (r_height == -2) {

16 return -2; // right subtree is not balanced.

17 }

18

19 if (abs(l_height - r_height) > 1) {

20 return -2; // current node T is not balanced.

21 }

22 return max(l_height, r_height) + 1; // return the height.

23 }

We can improve the space complexity if we know the number of nodes n in the
tree in advance. Specifically, the space complexity can be improved to O(log n) by
keeping a global variable that records the maximum height ms of the stack. Donald
Knuth (“The Art of Computer Programming, Volume 3: Sorting and Searching”, Page 460)
proves that the height of a balanced tree on n nodes is no more than hn = 1.4405 lg( n

2 +

3) − 0.3277. The stack height is a lower bound on the height of the tree, and so, if the
stack height ever exceeds hn, we return −2.

Variant 10.1.1 : Write a function that returns the size of the largest subtree that is
complete.

Problem 10.2, pg. 60 : Design an efficient algorithm for computing the LCA of nodes a and
b in a binary tree in which nodes do not have a parent pointer.

Solution 10.2: Let a and b be the nodes whose LCA we wish to compute. Observe
that if the root is one of a or b, then it is the LCA. Otherwise, let L and R be the trees
rooted at the left child and the right child of the root. If both nodes lie in L (or R),
their LCA is in L (or R). Otherwise, their LCA is the root itself. This is the basis for
the algorithm presented below.

1 BinaryTreeNode <int>* LCA(const unique_ptr <BinaryTreeNode <int>>& T,

2 const unique_ptr <BinaryTreeNode <int>>& a,

3 const unique_ptr <BinaryTreeNode <int>>& b) {

4 if (!T) { // empty subtree.

5 return nullptr;

6 } else if (T == a || T == b) {

7 return T.get();

8 }
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9

10 auto* l_res = LCA(T->left, a, b), *r_res = LCA(T->right, a, b);

11 if (l_res && r_res) {

12 return T.get(); // found a and b in different subtrees.

13 } else {

14 return l_res ? l_res : r_res;

15 }

16 }

The algorithm is structurally similar to a recursive inorder traversal, and the com-
plexities are the same.

Problem 10.3, pg. 60 : Let T be the root of a binary tree in which nodes have an explicit
parent field. Design an iterative algorithm that enumerates the nodes inorder and uses O(1)
additional space. Your algorithm cannot modify the tree.

Solution 10.3: The standard idiom for an inorder traversal is traverse-left, visit-root,
traverse-right. Accessing the left child is straightforward. Returning from a left child
l to its parent entails examining l’s parent field; returning from a right child r to its
parent is similar.

To make this scheme work, we need to know when we take a parent pointer to
node T if the child we completed traversing was T’s left child (in which case we
need to traverse T and then T’s right child) or a right child (in which case we have
completed traversing T). We achieve this by storing the child in a prev variable before
we move to the parent, T. We then compare prev with T’s left child and the right
child.

1 void inorder_traversal(const unique_ptr <BinaryTreeNode <int>>& T) {

2 // Empty tree.

3 if (!T) {

4 return;

5 }

6

7 BinaryTreeNode <int>* prev = nullptr, *curr = T.get(), *next;

8 while (curr) {

9 if (!prev || prev->left.get() == curr || prev->right.get() == curr) {

10 if (curr->left) {

11 next = curr->left.get();

12 } else {

13 cout << curr->data << endl;

14 next = (curr->right ? curr->right.get() : curr->parent);

15 }

16 } else if (curr->left.get() == prev) {

17 cout << curr->data << endl;

18 next = (curr->right ? curr->right.get() : curr->parent);

19 } else { // curr->right.get() == prev.

20 next = curr->parent;

21 }

22

23 prev = curr;

24 curr = next;

25 }
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26 }

The time complexity is O(n), where n is the number of nodes in T.

ε-Variant 10.3.1 : How would you perform preorder and postorder traversals itera-
tively using O(1) additional space? Your algorithm cannot modify the tree. Nodes
have an explicit parent field.

Problem 10.4, pg. 60 : Design an algorithm that takes a node n in a binary tree, and returns
its successor. Assume that each node has a parent field; the parent field of root is null.

Solution 10.4: If n has a nonempty right subtree, we return the leftmost node in
the right subtree. If n does not have a right child, then we keep traversing parent
pointers till we encounter a node which is the left child of its parent, in which case
that parent is n’s successor. If we reach the root then n is the last node in the inorder
traversal and has no successor.

1 BinaryTreeNode <int>* find_successor(

2 const unique_ptr <BinaryTreeNode <int>>& node) {

3 auto* n = node.get();

4 if (n->right) {

5 // Find the leftmost element in n’s right subtree.

6 n = n->right.get();

7 while (n->left) {

8 n = n->left.get();

9 }

10 return n;

11 }

12

13 // Find the first parent whose left child contains n.

14 while (n->parent && n->parent->right.get() == n) {

15 n = n->parent;

16 }

17 // Return nullptr means n does not have successor.

18 return n->parent;

19 }

Since the number of edges followed cannot be more than the tree height, the time
complexity is O(h), where h is the height of the tree.

Problem 11.1, pg. 62 : Design an algorithm that takes a set of files containing stock trades
sorted by increasing trade times, and writes a single file containing the trades appearing in
the individual files sorted in the same order. The algorithm should use very little RAM,
ideally of the order of a few kilobytes.

Solution 11.1: In the abstract, we are trying to merge k sequences sorted in increasing
order. One way to do this is to repeatedly pick the smallest element amongst the
smallest remaining elements of each of the k sequences. A min-heap is ideal for
maintaining a set of elements when we need to insert arbitrary values, as well as query
for the smallest element. There are no more than k elements in the min-heap. Both
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extract-min and insert take O(log k) time. Hence, we can do the merge in O(n log k)
time, where n is the total number of elements in the input. The space complexity
is O(k) beyond the space needed to write the final result. The implementation is
given below. Note that for each element we need to store the sequence it came from.
For ease of exposition, we show how to merge sorted arrays, rather than files. The
only difference is that for the file case we do not need to explicitly maintain an index
for next unprocessed element in each sequence—the file I/O library tracks the first
unread entry in the file.

1 struct Compare {

2 bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {

3 return lhs.first > rhs.first;

4 }

5 };

6

7 vector<int> merge_arrays(const vector<vector<int>>& S) {

8 priority_queue <pair<int, int>, vector<pair<int, int>>, Compare> min_heap;

9 vector<int> S_idx(S.size(), 0);

10

11 // Every array in S puts its smallest element in heap.

12 for (int i = 0; i < S.size(); ++i) {

13 if (S[i].size() > 0) {

14 min_heap.emplace(S[i][0], i);

15 S_idx[i] = 1;

16 }

17 }

18

19 vector<int> ret;

20 while (!min_heap.empty()) {

21 pair<int, int> p = min_heap.top();

22 ret.emplace_back(p.first);

23 // Add the smallest element into heap if possible.

24 if (S_idx[p.second] < S[p.second].size()) {

25 min_heap.emplace(S[p.second][S_idx[p.second]++], p.second);

26 }

27 min_heap.pop();

28 }

29 return ret;

30 }

Problem 11.2, pg. 63 : How would you compute the k stars which are closest to the Earth?
You have only a few megabytes of RAM.

Solution 11.2: If RAM was not a limitation, we could read the data into an array, and
compute the k smallest elements using a selection algorithm.

It is not difficult to come up with an algorithm based on processing through
the file, selecting all stars within a distance d, and sorting the result. Selecting d
appropriately is difficult, and will require multiple passes with different choices of d.

A better approach is to use a max-heap H of k elements. We start by adding the
first k stars to H. As we process the stars, each time we encounter a star s that is
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closer to the Earth than the star m in H that is furthest from the Earth (which is the
star at the root of H), we delete m from H, and add s to H.

The heap-based algorithm hasO(n log k) time complexity to find the k closest stars
out of n candidates, independent of the order in which stars are processed and their
locations. Its space complexity is O(k).

1 class Star {

2 public:

3 // The distance between this star to the Earth.

4 double distance() const { return sqrt(x_ * x_ + y_ * y_ + z_ * z_); }

5

6 bool operator <(const Star& s) const { return distance() < s.distance(); }

7

8 int ID_;

9 double x_, y_, z_;

10 };

11

12 vector<Star> find_closest_k_stars(int k, istringstream *sin) {

13 // Use max_heap to find the closest k stars.

14 priority_queue <Star, vector<Star>> max_heap;

15 string line;

16

17 // Record the first k stars.

18 while (getline(*sin, line)) {

19 stringstream line_stream(line);

20 string buf;

21 getline(line_stream , buf, ’,’);

22 int ID = stoi(buf);

23 array<double, 3> data; // stores x, y, and z.

24 for (int i = 0; i < 3; ++i) {

25 getline(line_stream , buf, ’,’);

26 data[i] = stod(buf);

27 }

28 Star s{ID, data[0], data[1], data[2]};

29

30 if (max_heap.size() == k) {

31 // Compare the top of heap with the incoming star.

32 Star far_star = max_heap.top();

33 if (s < far_star) {

34 max_heap.pop();

35 max_heap.emplace(s);

36 }

37 } else {

38 max_heap.emplace(s);

39 }

40 }

41

42 // Store the closest k stars.

43 vector<Star> closest_stars;

44 while (!max_heap.empty()) {

45 closest_stars.emplace_back(max_heap.top());

46 max_heap.pop();

47 }

48 return closest_stars;
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49 }

Variant 11.2.1 : Design an O(n log k) time algorithm that reads a sequence of n ele-
ments and for each element, starting from the k-th element, prints the k-th largest
element read up to that point. The length of the sequence is not known in advance.
Your algorithm cannot use more than O(k) additional storage. What are the worst
case inputs for your algorithm?

Problem 11.3, pg. 63 : Design an algorithm for computing the running median of a sequence.
The time complexity should be O(log n) per element read in, where n is the number of values
read in up to that element.

Solution 11.3: We use two heaps, L, a max-heap, and H, a min-heap. The invariant
here is that for every incoming element from the stream, we want to let L store the
smaller half of the stream data so far, and let H store the bigger half. By keeping this
invariant, we can output the median easily according to the number of elements we
have seen so far. Following is the implementation:

1 void online_median(istringstream* sin) {

2 // Min-heap stores the bigger part of the stream.

3 priority_queue <int, vector<int>, greater<int>> H;

4 // Max-heap stores the smaller part of the stream.

5 priority_queue <int, vector<int>, less<int>> L;

6

7 int x;

8 while (*sin >> x) {

9 if (!L.empty() && x > L.top()) {

10 H.emplace(x);

11 } else {

12 L.emplace(x);

13 }

14 if (H.size() > L.size() + 1) {

15 L.emplace(H.top());

16 H.pop();

17 } else if (L.size() > H.size() + 1) {

18 H.emplace(L.top());

19 L.pop();

20 }

21

22 if (H.size() == L.size()) {

23 cout << 0.5 * (H.top() + L.top()) << endl;

24 } else {

25 cout << (H.size() > L.size() ? H.top() : L.top()) << endl;

26 }

27 }

28 }

The time complexity per entry is O(log n), corresponding to insertion and extraction
from a heap.
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Problem 12.1, pg. 66 : Write a method that takes a sorted array A and a key k and returns the
index of the first occurrence of k in A. Return−1 if k does not appear in A. For example, when
applied to the array in Figure 12.1 on Page 66 your algorithm should return 3 if k = 108; if
k = 285, your algorithm should return 6.

Solution 12.1: The key idea is to search for k. However, even if we find k, after
recording this we continue the search on the left subarray.

1 int search_first(const vector<int>& A, int k) {

2 int l = 0, r = A.size() - 1, res = -1;

3 while (l <= r) {

4 int m = l + ((r - l) >> 1);

5 if (A[m] > k) {

6 r = m - 1;

7 } else if (A[m] == k) {

8 // Record the solution and keep searching the left part.

9 res = m, r = m - 1;

10 } else { // A[m] < k

11 l = m + 1;

12 }

13 }

14 return res;

15 }

The complexity bound is stillO(log n)—this is because each iteration reduces the size
of the subarray being searched by half.

ε-Variant 12.1.1 : Let A be an unsorted array of n integers, with A[0] ≥ A[1] and
A[n − 2] ≤ A[n − 1]. Call an index i a local minimum if A[i] is less than or equal to its
neighbors. How would you efficiently find a local minimum, if one exists?

ε-Variant 12.1.2 : A sequence is said to be ascending if each element is greater than
or equal to its predecessor; a descending sequence is one in which each element is
less than or equal to its predecessor. A sequence is strictly ascending if each element
is greater than its predecessor. Suppose it is known that an array A consists of an
ascending sequence followed by a descending sequence. Design an algorithm for
finding the maximum element in A. Solve the same problem when A consists of a
strictly ascending sequence, followed by a descending sequence.

Problem 12.2, pg. 66 : Design anO(log n) algorithm for finding the position of the smallest
element in a cyclically sorted array. Assume all elements are distinct. For example, for the
array in Figure 12.2 on Page 67, your algorithm should return 4.

Solution 12.2: We make use of the decrease and conquer principle. Specifically, we
maintain an interval of candidate indices, and iteratively eliminate a constant fraction
of the indices in this interval. Let I = [lI, rI] be the set of indices being considered, and
mI be the midpoint of I, i.e., lI + b

rI−lI
2 c. If A[mI] > A[rI] then [lI,mI] cannot contain the

index of the minimum element. Therefore, we can restrict the search to [mI + 1, rI]. If
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A[mI] < A[rI] we restrict our attention to [lI,mI]. We start with I = [0,n − 1], and end
when the interval has one element.

1 int search_smallest(const vector<int>& A) {

2 int l = 0, r = A.size() - 1;

3 while (l < r) {

4 int m = l + ((r - l) >> 1);

5 if (A[m] > A[r]) {

6 l = m + 1;

7 } else { // A[m] <= A[r].

8 r = m;

9 }

10 }

11 return l;

12 }

The time complexity is the same as that of binary search, namely O(log n).
Note that this problem cannot be solved in less than linear time when elements

may be repeated. For example, if A consists of n−1 1s and a single 0, that 0 cannot be
detected in the worst case without inspecting every element. Following is the code
for the scenario when elements may be repeated:

1 int search_smallest(const vector<int>& A) {

2 return search_smallest_helper(A, 0, A.size() - 1);

3 }

4

5 int search_smallest_helper(const vector<int>& A, int l, int r) {

6 if (l == r) {

7 return l;

8 }

9

10 int m = l + ((r - l) >> 1);

11 if (A[m] > A[r]) {

12 return search_smallest_helper(A, m + 1, r);

13 } else if (A[m] < A[r]) {

14 return search_smallest_helper(A, l, m);

15 } else { // A[m] == A[r].

16 // Smallest element must exist in either left or right side.

17 int l_res = search_smallest_helper(A, l, m);

18 int r_res = search_smallest_helper(A, m + 1, r);

19 return A[r_res] < A[l_res] ? r_res : l_res;

20 }

21 }

Variant 12.2.1 : Design an O(log n) algorithm for finding the position of an element
k in a cyclically sorted array.

Problem 12.3, pg. 67 : You are given two sorted arrays A and B of lengths m and n,
respectively, and a positive integer k ∈ [1,m + n]. Design an algorithm that runs in O(log k)
time for computing the k-th smallest element in array formed by merging A and B. Array
elements may be duplicated within and between A and B.

ElementsOfProgrammingInterviews.com



Solution 12.3 137

Solution 12.3: Suppose the first k elements of the union of A and B consist of the first
x elements of A and the first k− x elements of B. We’ll use binary search to determine
x.

Specifically, we will maintain an interval [b, t] that contains x, and use binary
search to iteratively half the size of the interval. Perform the iteration while b < t.
At each iteration set x = b + b t−b

2 c. If A[x] < B[(k − x) − 1], then A[x] must be in
the first k elements of the union, so we update b to x + 1 and continue. Similarly, if
A[x−1] > B[k−x], then A[x−1] cannot be in the first k elements, so we can update t to
x− 1. Otherwise, we must have B[(k− x)− 1] ≤ A[x] and A[x− 1] ≤ B[k− x], in which
case the result is the larger of A[x − 1] and B[(k − x) − 1], since the first x elements of
A and the first k − x elements of B when sorted end in A[x − 1] or B[(k − x) − 1].

If the iteration ends without returning, it must be that b = t. Clearly, x = b = t. We
simply return the larger of A[x − 1] and B[(k − x) − 1]. (If A[x − 1] = B[(k − x) − 1], we
arbitrarily return either.)

The initial values for b and t need to be chosen carefully. Naïvely setting b = 0, t = k
does not work, since this choice may lead to array indices in the search lying outside
the range of valid indices. The indexing constraints for A and B can be resolved by
initializing b to max(0, k − n) and t to min(m, k).

1 int find_kth_in_two_sorted_arrays(const vector<int>& A, const vector<int>& B,

2 int k) {

3 // Lower bound of elements we will choose in A.

4 int b = max(0, static_cast <int>(k - B.size()));

5 // Upper bound of elements we will choose in A.

6 int t = min(static_cast <int>(A.size()), k);

7

8 while (b < t) {

9 int x = b + ((t - b) >> 1);

10 int A_x_1 = (x <= 0 ? numeric_limits <int>::min() : A[x - 1]);

11 int A_x = (x >= A.size() ? numeric_limits <int>::max() : A[x]);

12 int B_k_x_1 = (k - x <= 0 ? numeric_limits <int>::min() : B[k - x - 1]);

13 int B_k_x = (k - x >= B.size() ? numeric_limits <int>::max() : B[k - x]);

14

15 if (A_x < B_k_x_1) {

16 b = x + 1;

17 } else if (A_x_1 > B_k_x) {

18 t = x - 1;

19 } else {

20 // B[k - x - 1] <= A[x] && A[x - 1] < B[k - x].

21 return max(A_x_1, B_k_x_1);

22 }

23 }

24

25 int A_b_1 = b <= 0 ? numeric_limits <int>::min() : A[b - 1];

26 int B_k_b_1 = k - b - 1 < 0 ? numeric_limits <int>::min() : B[k - b - 1];

27 return max(A_b_1, B_k_b_1);

28 }

Since in each iteration we halve the length of [b, t] the time complexity is O(log n).
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Problem 12.4, pg. 67 : Suppose you were given a file containing roughly one billion In-
ternet Protocol (IP) addresses, each of which is a 32-bit unsigned integer. How would you
programmatically find an IP address that is not in the file? Assume you have unlimited drive
space but only two megabytes of RAM at your disposal.

Solution 12.4: In the first step, we build an array of 216 32-bit unsigned integers that
is initialized to 0 and for every IP address in the file, we take its 16 MSBs to index
into this array and increment the count of that number. Since the file contains fewer
than 232 numbers, there must be one entry in the array that is less than 216. This tells
us that there is at least one IP address which has those upper bits and is not in the
file. In the second pass, we can focus only on the addresses that match this criterion
and use a bit array of size 216 to identify one of the missing numbers.

1 int find_missing_element(ifstream* ifs) {

2 vector<size_t> counter(1 << 16, 0);

3 unsigned int x;

4 while (*ifs >> x) {

5 ++counter[x >> 16];

6 }

7

8 for (int i = 0; i < counter.size(); ++i) {

9 // Find one bucket contains less than (1 << 16) elements.

10 if (counter[i] < (1 << 16)) {

11 bitset <(1 << 16)> bit_vec;

12 ifs->clear();

13 ifs->seekg(0, ios::beg);

14 while (*ifs >> x) {

15 if (i == (x >> 16)) {

16 bit_vec.set(((1 << 16) - 1) & x); // gets the lower 16 bits of x.

17 }

18 }

19 ifs->close();

20

21 for (int j = 0; j < (1 << 16); ++j) {

22 if (bit_vec.test(j) == 0) {

23 return (i << 16) | j;

24 }

25 }

26 }

27 }

28 }

Problem 13.1, pg. 69 : Write a function that takes as input a dictionary of English words,
and returns a partition of the dictionary into subsets of words that are all anagrams of each
other.

Solution 13.1: Given a string s, let sort(s) be the string consisting of the characters in
s rearranged so that they appear in sorted order. Observe that x and y are anagrams
iff sort(x) = sort(y). For example, sort(“logarithmic”) and sort(“algorithmic”) are
both “acghiilmort”. Therefore, anagrams can be identified by adding sort(s) for each
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string s in the dictionary to a hash table. Specifically, we store the sorted strings as
keys. For each key, the value is an array of the corresponding strings.

1 void find_anagrams(const vector<string >& dictionary) {

2 // Get the sorted string and then insert into hash table.

3 unordered_map <string, vector<string>> hash;

4 for (const string& s : dictionary) {

5 string sorted_str(s);

6 // Use sorted string as the hash code.

7 sort(sorted_str.begin(), sorted_str.end());

8 hash[sorted_str].emplace_back(s);

9 }

10

11 for (const pair<string, vector<string>>& p : hash) {

12 // Multiple strings with the same hash code => anagrams.

13 if (p.second.size() >= 2) {

14 // Output all strings.

15 for (const auto& s : p.second) {

16 cout << s << " ";

17 }

18 cout << endl;

19 }

20 }

21 }

Let the maximum string length be m, and the total number of strings be n. The
computation consists of n calls to sort and n insertions into the hash table, followed
by an iteration over the keys and printing corresponding values. Sorting the keys has
time complexity O(nm log m); the insertion and printing has time complexity O(nm),
yielding an O(nm log m) time complexity overall. In principle, we can use counting
sort to reduce the time to sort to O(nm). For small strings (m ≤ 100) the initialization
overhead of counting sort is too high to see a benefit.

Problem 13.2, pg. 69 : You are required to write a method which takes an anonymous letter
L and text from a magazine M. Your method is to return true iff L can be written using M,
i.e., if a letter appears k times in L, it must appear at least k times in M.

Solution 13.2: Assume the string encoding the magazine is as long as the string
encoding the letter. (If not, the answer is false.) We build a hash table HL for L,
where each key is a character in the letter and its value is the number of times it
appears in the letter. Consequently, we scan the magazine character-by-character.
When processing c, if c appears in HL, we reduce its frequency count by 1; we remove
it from HL when its count goes to zero. If HL becomes empty, we return true. If it is
nonempty when we get to the end of M, we return false.

1 bool anonymous_letter(const string& L, const string& M) {

2 unordered_map <char, int> hash;

3 // Insert all chars in L into a hash table.

4 for_each(L.begin(), L.end(), [&hash](const char & c) { ++hash[c]; });

5

6 // Check chars in M that could cover chars in a hash table.

7 for (const char& c : M) {
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8 auto it = hash.find(c);

9 if (it != hash.cend()) {

10 if (--it->second == 0) {

11 hash.erase(it);

12 if (hash.empty() == true) {

13 return true;

14 }

15 }

16 }

17 }

18 // No entry in hash means L can be covered by M.

19 return hash.empty();

20 }

In the worst case, the letter is not constructible or the last character of M is essentially
required. Therefore, the time complexity is O(nM) where nM is the length of M The
space complexity is O(cL), where cL is the number of distinct characters appearing L.

If the characters are coded in ASCII, we could do away with HL and use a 256 entry
integer array A, with A[i] being set to the number of times the character i appears in
the letter.

Problem 13.3, pg. 70 : Let P be a set of n points in the plane. Each point has integer
coordinates. Design an efficient algorithm for computing a line that contains the maximum
number of points in P.

Solution 13.3: Every pair of distinct points defines a line. We can use a hash table
H to map lines to the set of points in P that lie on them. (Each corresponding set of
points itself could be stored using a hash table.)

There are n(n − 1)/2 pairs of points, and for each pair we have to do a lookup in
H, an insert into H if the defined line is not already in H, and two inserts into the
corresponding set of points. The hash table operations are O(1) time, leading to an
O(n2) time bound for this part of the computation.

We finish by finding the line with the maximum number of points with a simple
iteration through the hash table searching for the line with the most points in its
corresponding set. There are at most n(n − 1)/2 lines, so the iteration takes O(n2)
time, yielding an overall time bound of O(n2).

The design of a hash function appropriate for lines is more challenging than it
may seem at first. The equation of line through (x1, y1) and (x2, y2) is

y =
y2 − y1

x2 − x1
x +

x2 y1 − x1 y2

x2 − x1
.

One idea would be to compute a hash code from the slope and the y-intercept of
this line as an ordered pair of doubles. Because of finite precision arithmetic, we may
have three points that are collinear map to distinct buckets. If the generated uniform
[0, 1] random number lies into [0.3, 0.6) we return the number 6.

A more robust hash function treats the slope and the y-intercept as rationals. A
rational is an ordered pair of integers: the numerator and the denominator. We need
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to bring the rational into a canonical form before applying the hash function. One
canonical form is to make the denominator always nonnegative, and relatively prime
to the numerator. Lines parallel to the y-axis are a special case. For such lines, we
use the x-intercept in place of the y-intercept, and use 1

0 as the slope.

1 struct Point {

2 // Equal function for hash.

3 bool operator==(const Point& that) const {

4 return x == that.x && y == that.y;

5 }

6

7 int x, y;

8 };

9

10 // Hash function for Point.

11 struct HashPoint {

12 size_t operator()(const Point& p) const {

13 return hash<int>()(p.x) ^ hash<int>()(p.y);

14 }

15 };

16

17 pair<int, int> get_canonical_fractional(int a, int b) {

18 int gcd = GCD(abs(a), abs(b));

19 a /= gcd, b /= gcd;

20 return b < 0 ? make_pair(-a, -b) : make_pair(a, b);

21 }

22

23 // Line function of two points, a and b, and the equation is

24 // y = x(b.y - a.y) / (b.x - a.x) + (b.x * a.y - a.x * b.y) / (b.x - a.x).

25 struct Line {

26 Line(const Point& a, const Point& b)

27 : slope(a.x != b.x ? get_canonical_fractional(b.y - a.y, b.x - a.x)

28 : make_pair(1, 0)),

29 intercept(a.x != b.x ? get_canonical_fractional(b.x * a.y - a.x * b.y,

30 b.x - a.x)

31 : make_pair(a.x, 1)) {}

32

33 // Equal function for Line.

34 bool operator==(const Line& that) const {

35 return slope == that.slope && intercept == that.intercept;

36 }

37

38 // Store the numerator and denominator pair of slope unless the line is

39 // parallel to y-axis that we store 1/0.

40 pair<int, int> slope;

41 // Store the numerator and denominator pair of the y-intercept unless

42 // the line is parallel to y-axis that we store the x-intercept.

43 pair<int, int> intercept;

44 };

45

46 // Hash function for Line.

47 struct HashLine {

48 size_t operator()(const Line& l) const {

49 return hash<int>()(l.slope.first) ^ hash<int>()(l.slope.second) ^
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50 hash<int>()(l.intercept.first) ^ hash<int>()(l.intercept.second);

51 }

52 };

53

54 Line find_line_with_most_points(const vector<Point>& P) {

55 // Add all possible lines into hash table.

56 unordered_map <Line, unordered_set <Point, HashPoint >, HashLine> table;

57 for (int i = 0; i < P.size(); ++i) {

58 for (int j = i + 1; j < P.size(); ++j) {

59 Line l(P[i], P[j]);

60 table[l].emplace(P[i]), table[l].emplace(P[j]);

61 }

62 }

63

64 // Return the line with most points have passed.

65 return max_element(table.cbegin(),

66 table.cend(),

67 [](const pair<Line, unordered_set <Point, HashPoint >>& a,

68 const pair<Line, unordered_set <Point, HashPoint >>& b)

69 { return a.second.size() < b.second.size(); })->first;

70 }

Problem 14.1, pg. 72 : Given sorted arrays A and B of lengths n and m respectively, return
an array C containing elements common to A and B. The array C should be free of duplicates.
How would you perform this intersection if—(1.) n ≈ m and (2.) n� m?

Solution 14.1: The brute-force algorithm is a “loop join”, i.e., traversing through all
the elements of one array and comparing them to the elements of the other array. This
has O(mn) time complexity, regardless of whether the arrays are sorted or unsorted:

1 vector<int> intersect_arrs1(const vector<int>& A, const vector<int>& B) {

2 vector<int> intersect;

3 for (int i = 0; i < A.size(); ++i) {

4 if (i == 0 || A[i] != A[i - 1]) {

5 for (int j = 0; j < B.size(); ++j) {

6 if (A[i] == B[j]) {

7 intersect.emplace_back(A[i]);

8 break;

9 }

10 }

11 }

12 }

13 return intersect;

14 }

However, since both the arrays are sorted, we can make some optimizations. First,
we can scan array A and use binary search in array B, find whether the element is
present in B.

1 vector<int> intersect_arrs2(const vector<int>& A, const vector<int>& B) {

2 vector<int> intersect;

3 for (int i = 0; i < A.size(); ++i) {

4 if ((i == 0 || A[i] != A[i - 1]) &&
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5 binary_search(B.cbegin(), B.cend(), A[i])) {

6 intersect.emplace_back(A[i]);

7 }

8 }

9 return intersect;

10 }

The time complexity is O(n log m).
We can further improve our run time by choosing the shorter array for the outer

loop since if n� m then m log(n)� n log(m).
This is the best solution if one set is much smaller than the other. However, it is

not the best when the array lengths are similar because we are not exploiting the fact
that both arrays are sorted. In this case, iterating in tandem through the elements of
each array in increasing order will work best as shown in this code.

1 vector<int> intersect_arrs3(const vector<int>& A, const vector<int>& B) {

2 vector<int> intersect;

3 int i = 0, j = 0;

4 while (i < A.size() && j < B.size()) {

5 if (A[i] == B[j] && (i == 0 || A[i] != A[i - 1])) {

6 intersect.emplace_back(A[i]);

7 ++i, ++j;

8 } else if (A[i] < B[j]) {

9 ++i;

10 } else { // A[i] > B[j].

11 ++j;

12 }

13 }

14 return intersect;

15 }

The run time for this algorithm is O(m + n).

Problem 14.2, pg. 72 : Given a set of n events, how would you determine the maximum
number of events that take place concurrently?

Solution 14.2: Each event corresponds to an interval [b, e]; let b and e be the earliest
starting time and last ending time. Define the function c(t) for t ∈ [b, e] to be the
number of intervals containing t. Observe that c(τ) does not change if τ is not the
starting or ending time of an event.

This leads to an O(n2) brute-force algorithm: for each interval, for each of its two
endpoints, determining how many intervals contain that point. The total number of
endpoints is 2n and each check takes O(n) time, since checking whether an interval
[bi, ei] contains a point t takes O(1) time (simply check if bi ≤ t ≤ ei).

We can improve the run time to O(n log n) by sorting the set of all the endpoints
in ascending order. If two endpoints have equal times, and one is a start time and
the other is an end time, the one corresponding to a start time comes first. (If both
are start or finish times, we break ties arbitrarily.)

We initialize a counter to 0, and iterate through the sorted sequence S from smallest
to largest. For each endpoint that is the start of an interval, we increment the counter
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by 1, and for each endpoint that is the end of an interval, we decrement the counter by
1. The maximum value attained by the counter is maximum number of overlapping
intervals.

1 struct Interval {

2 int start, finish;

3 };

4

5 struct Endpoint {

6 bool operator <(const Endpoint& e) const {

7 return time != e.time ? time < e.time : (isStart && !e.isStart);

8 }

9

10 int time;

11 bool isStart;

12 };

13

14 int find_max_concurrent_events(const vector<Interval >& A) {

15 // Build the endpoint array.

16 vector<Endpoint> E;

17 for (const Interval& i : A) {

18 E.emplace_back(Endpoint{i.start, true});

19 E.emplace_back(Endpoint{i.finish, false});

20 }

21 // Sort the endpoint array according to the time.

22 sort(E.begin(), E.end());

23

24 // Find the maximum number of events overlapped.

25 int max_count = 0, count = 0;

26 for (const Endpoint& e : E) {

27 if (e.isStart) {

28 max_count = max(++count, max_count);

29 } else {

30 --count;

31 }

32 }

33 return max_count;

34 }

Sorting the endpoint array takes O(n log n) time; iterating through the sorted array
takesO(n) time, yielding anO(n log n) time complexity. The space complexity isO(1).

ε-Variant 14.2.1 : Users 1, 2, . . . ,n share an Internet connection. User i uses bi band-
width from time si to fi, inclusive. What is the peak bandwidth usage?

Problem 14.3, pg. 73 : Write a function which takes as input an array A of disjoint closed
intervals with integer endpoints, sorted by increasing order of left endpoint, and an interval
I, and returns the union of I with the intervals in A, expressed as a union of disjoint intervals.

Solution 14.3: Let I = [x, y]. There are two possibilities—A has an interval that has
a nonempty intersection with I, or it does not. If it does not contain an interval
intersecting I, we simply add I in the appropriate place.
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If A does contain an interval with a nonempty intersection with I, we iterate
through A until we encounter the first such interval, call it I′. As a general fact, given
any two intervals [a, b] and [a′, b′] that intersect, their union is [min(a, a′),max(b, b′)].
If I′ ∪ I = I′, there there is nothing to do, we can return A. Otherwise, we compute
w = I′ ∪ I. Now we keep testing subsequent intervals for intersection with w. If
an interval J overlaps with w we update w to the union of J with w. As soon as an
interval is disjoint from w, we add w and the remaining intervals to the result and
return.

1 struct Interval {

2 int left, right;

3 };

4

5 vector<Interval> insert_interval(const vector<Interval >& intervals ,

6 Interval new_interval) {

7 size_t i = 0;

8 vector<Interval> res;

9 // Insert intervals appeared before new_interval.

10 while (i < intervals.size() && new_interval.left > intervals[i].right) {

11 res.emplace_back(intervals[i++]);

12 }

13

14 // Merges intervals that overlap with new_interval.

15 while (i < intervals.size() && new_interval.right >= intervals[i].left) {

16 new_interval = {min(new_interval.left, intervals[i].left),

17 max(new_interval.right, intervals[i].right)};

18 ++i;

19 }

20 res.emplace_back(new_interval);

21

22 // Insert intervals appearing after new_interval.

23 res.insert(res.end(), intervals.begin() + i, intervals.end());

24 return res;

25 }

Since the program spends O(1) time per entry, its time complexity is O(n).

Problem 15.1, pg. 74 : Write a function that takes as input the root of a binary tree whose
nodes have a key field, and returns true iff the tree satisfies the BST property.

Solution 15.1: Several solutions exist, which differ in terms of their space and time
complexity, and the effort needed to code them.

The simplest is to start with the root r, and compute the maximum key r.left.max
stored in the root’s left subtree, and the minimum key r.right.min in the root’s right
subtree. Then we check that the key at the root is greater than or equal to r.right.min
and less than or equal to r.left.max. If these checks pass, we continue checking the
root’s left and right subtree recursively.

Computing the minimum key in a binary tree is straightforward: we compare the
key stored at the root with the minimum key stored in its left subtree and with the
minimum key stored in its right subtree. The maximum key is computed similarly.
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(Note that the minimum may be in either subtree, since the tree may not satisfy the
BST property.)

The problem with this approach is that it will repeatedly traverse subtrees. In a
worst case, when the tree is BST and each node’s left child is empty, its complexity
is O(n2), where n is the number of nodes. The complexity can be improved to O(n)
by caching the largest and smallest keys at each node; this requires O(n) additional
storage.

We now present two approaches which have O(n) time complexity and O(h)
additional space complexity.

The first, more straightforward approach, is to check constraints on the values for
each subtree. The initial constraint comes from the root. Each node in its left (right)
child must have a value less than or equal (greater than or equal) to the value at the
root. This idea generalizes: if all nodes in a tree rooted at t must have values in the
range [l,u], and the value at t is w ∈ [l,u], then all values in the left subtree of t must
be in the range [l,w], and all values stored in the right subtree of t must be in the
range [w,u]. The code below uses this approach.

1 bool is_BST(const unique_ptr <BinaryTreeNode <int>>& r) {

2 return is_BST_helper(r,

3 numeric_limits <int>::min(),

4 numeric_limits <int>::max());

5 }

6

7 bool is_BST_helper(const unique_ptr <BinaryTreeNode <int>>& r,

8 int lower, int upper) {

9 if (!r) {

10 return true;

11 } else if (r->data < lower || r->data > upper) {

12 return false;

13 }

14

15 return is_BST_helper(r->left, lower, r->data) &&

16 is_BST_helper(r->right, r->data, upper);

17 }

The second approach is to perform an inorder traversal, and record the value
stored at the last visited node. Each time a new node is visited, its value is compared
with the value of the previous visited node; if at any step, the value at the previously
visited node is greater than the node currently being visited, we have a violation of
the BST property. In principle, this approach can use the existence of an O(1) space
complexity inorder traversal to further reduce the space complexity.

1 bool is_BST(const unique_ptr <BinaryTreeNode <int>>& root) {

2 auto* n = root.get();

3 // Store the value of previous visited node.

4 int last = numeric_limits <int>::min();

5 bool res = true;

6

7 while (n) {

8 if (n->left.get()) {

9 // Find the predecessor of n.
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10 auto* pre = n->left.get();

11 while (pre->right.get() && pre->right.get() != n) {

12 pre = pre->right.get();

13 }

14

15 // Process the successor link.

16 if (pre->right.get()) { // pre->right == n.

17 // Revert the successor link if predecessor’s successor is n.

18 pre->right.release();

19 if (last > n->data) {

20 res = false;

21 }

22 last = n->data;

23 n = n->right.get();

24 } else { // if predecessor’s successor is not n.

25 pre->right.reset(n);

26 n = n->left.get();

27 }

28 } else {

29 if (last > n->data) {

30 res = false;

31 }

32 last = n->data;

33 n = n->right.get();

34 }

35 }

36 return res;

37 }

The approaches outlined above all explore the left subtree first. Therefore, even
if the BST property does not hold at a node which is close to the root (e.g., the key
stored at the right child is less than the key stored at the root), their time complexity
is still O(n).

We can search for violations of the BST property in a BFS manner to reduce the time
complexity when the property is violated at a node whose depth is small, specifically
much less than n.

The code below uses a queue to process nodes. Each queue entry contains a node,
as well as an upper and a lower bound on the keys stored at the subtree rooted at that
node. The queue is initialized to the root, with lower bound −∞ and upper bound
+∞.

Suppose an entry with node n, lower bound l and upper bound u is popped. If n’s
left child is not null, a new entry consisting of n.left, upper bound n.key and lower
bound l is added. A symmetric entry is added if n’s right child is not null. When
adding entries, we check that the node’s key lies in the range specified by the lower
bound and the upper bound; if not, we return immediately reporting a failure.

We claim that if the BST property is violated in the subtree consisting of nodes at
depth d or less, it will be discovered without visiting any nodes at depths d + 1 or
more. This is because each time we enqueue an entry, the lower and upper bounds
on the node’s key are the tightest possible. A formal proof of this is by induction;
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intuitively, it is because we satisfy all the BST requirements induced by the search
path to that node.

1 struct QNode {

2 const unique_ptr <BinaryTreeNode <int>>& node;

3 int lower, upper;

4 };

5

6 bool is_BST(const unique_ptr <BinaryTreeNode <int>>& r) {

7 queue<QNode> q;

8 q.emplace(QNode{r, numeric_limits <int>::min(), numeric_limits <int>::max()});

9

10 while (!q.empty()) {

11 if (q.front().node.get()) {

12 if (q.front().node->data < q.front().lower ||

13 q.front().node->data > q.front().upper) {

14 return false;

15 }

16

17 q.emplace(QNode{q.front().node->left, q.front().lower,

18 q.front().node->data});

19 q.emplace(QNode{q.front().node->right, q.front().node->data,

20 q.front().upper});

21 }

22 q.pop();

23 }

24 return true;

25 }

Problem 15.2, pg. 75 : Write a function that takes a BST T and a key k, and returns the
first entry larger than k that would appear in an inorder traversal. If k is absent or no key
larger than k is present, return null. For example, when applied to the BST in Figure 15.1
on Page 75 you should return 29 if k = 23; if k = 32, you should return null.

Solution 15.2: A direct approach is to maintain a candidate node, first. The node
first is initialized to null. Now we look for k using the standard search idiom. If the
current node’s key is larger than k, we update first to the current node and continue
the search in the left subtree. If the current node’s key is smaller than k, we search
in the right subtree. If the current node’s key is equal to k, we set a Boolean-valued
found_k variable to true, and continue search in the current node’s right subtree.
When the current node becomes null, if found_k is true we return first, otherwise
we return null. Correctness follows from the fact that after first is assigned within
the loop, the desired result is within the tree rooted at first.

1 BSTNode<int>* find_first_larger_k_with_k_exist(

2 const unique_ptr <BSTNode<int>>& T,

3 int k) {

4 bool found_k = false;

5 BSTNode<int>* curr = T.get(), *first = nullptr;

6

7 while (curr) {

8 if (curr->data == k) {
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9 found_k = true;

10 curr = curr->right.get();

11 } else if (curr->data > k) {

12 first = curr;

13 curr = curr->left.get();

14 } else { // curr->data < k.

15 curr = curr->right.get();

16 }

17 }

18 return found_k ? first : nullptr;

19 }

The time complexity is O(h), where h is the height of the tree. The space complexity
is O(1).

Problem 15.3, pg. 75 : How would you build a BST of minimum possible height from a
sorted array A?

Solution 15.3: Intuitively, we want the subtrees to be as balanced as possible. One
way of achieving this is to make the element at entry b n

2 c the root, and recursively
compute minimum height BSTs for the subarrays A[0 : b n

2 c − 1] and A[b n
2 c+ 1 : n− 1].

1 BSTNode<int>* build_BST_from_sorted_array(const vector<int>& A) {

2 return build_BST_from_sorted_array_helper(A, 0, A.size());

3 }

4

5 // Build BST based on subarray A[start : end - 1].

6 BSTNode<int>* build_BST_from_sorted_array_helper(const vector<int>& A,

7 size_t start, size_t end) {

8 if (start < end) {

9 size_t mid = start + ((end - start) >> 1);

10 return new BSTNode<int>{

11 A[mid], unique_ptr <BSTNode<int>>(

12 build_BST_from_sorted_array_helper(A, start, mid)),

13 unique_ptr <BSTNode<int>>(

14 build_BST_from_sorted_array_helper(A, mid + 1, end))};

15 }

16 return nullptr;

17 }

The time complexity T(n) satisfies the recurrence T(n) = 2T(n/2) +O(1), which solves
to T(n) = O(n). Another way of seeing this is that we spend make exactly n calls to
the recursive function and spend O(1) in each.

Problem 16.1, pg. 76 : Exactly n rings on P1 need to be transferred to P2, possibly using P3
as an intermediate, subject to the stacking constraint. Write a function that prints a sequence
of operations that transfers all the rings from P1 to P2.

Solution 16.1: Number the n rings from 1 to n. Transfer these n rings from P1 to P2
as follows.

(1.) Recursively transfer n − 1 rings from P1 to P3 using P2.
(2.) Move the ring numbered n from P1 to P2.
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(3.) Recursively transfer the n − 1 rings on P3 to P2, using P1.
This is illustrated in Figure 21.3. Code implementing this idea is given below.

P1 P2 P3

(a) Move all but the lowest disc from P1 to P3.

P1 P2 P3

(b) Move the lowest disc from P1 to P2.

P1 P2 P3

(c) Move P3 to P2 using P1.

P1 P2 P3

(d) Solved!

Figure 21.3: A recursive solution to the Towers of Hanoi for n = 6.

1 void move_tower_hanoi(int n) {

2 array<stack<int>, 3> pegs;

3 // Initialize pegs.

4 for (int i = n; i >= 1; --i) {

5 pegs[0].push(i);

6 }

7

8 transfer(n, pegs, 0, 1, 2);

9 }

10

11 void transfer(int n, array<stack<int>, 3>& pegs, int from, int to, int use) {

12 if (n > 0) {

13 transfer(n - 1, pegs, from, use, to);

14 pegs[to].push(pegs[from].top());

15 pegs[from].pop();

16 cout << "Move from peg " << from << " to peg " << to << endl;

17 transfer(n - 1, pegs, use, to, from);

18 }

19 }

The number of moves, T(n), satisfies the following recurrence: T(n) = T(n − 1) +

1 + T(n − 1), which solves to T(n) = 2n
− 1. One way to see this is to “unwrap” the

recurrence k time : T(n) = 2lT(n − k) + 2k−1 + 2k−2 + · · · + 2 + 1. Printing a single move
takes O(1) time, implying an O(2n) time complexity. (Note that if we were asked
instead to print the smallest number of moves, rather than the moves themselves,
we could simply return 2n

− 1.)

ε-Variant 16.1.1 : Find the minimum number of operations subject to the constraint
that each operation must involve P3.
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ε-Variant 16.1.2 : Find the minimum number of operations subject to the constraint
that each transfer must be from P1 to P2, P2 to P3, or P3 to P1.

ε-Variant 16.1.3 : Find the minimum number of operations subject to the constraint
that a ring can never be transferred directly from P1 to P2 (transfers from P2 to P1
are allowed).

ε-Variant 16.1.4 : Find the minimum number of operations when the stacking con-
straint is relaxed to the following—the largest ring on a peg must be the lowest ring
on the peg. (The remaining rings on the peg can be in any order, e.g., it is fine to have
the second-largest ring above the third-largest ring.)

Variant 16.1.5 : You have 2n disks of n different sizes, two of each size. You cannot
place a larger disk on a smaller disk, but can place a disk of equal size one on top of
the other. Compute the minimum number of moves to transfer the 2n disks from P1
to P2.

Variant 16.1.6 : You have 2n disks which are colored black or white. You cannot
place a white disk directly on top of a black disk. Compute the minimum number of
moves to complete the transfer to transfer the 2n disks from P1 to P2.

Variant 16.1.7 : Find the minimum number of operations if you have a fourth peg,
P4.

Problem 16.2, pg. 76 : Implement a method that takes as input a set S of n distinct elements,
and prints the power set of S. Print the subsets one per line, with elements separated by
commas.

Solution 16.2: One way to solve this problem is realizing that for a given ordering of
the elements of S, there exists a one-to-one correspondence between the 2n bit arrays
of length n and the set of all subsets of S—the 1s in the n-length bit array v indicate
the elements of S in the subset corresponding to v.

For example, if S = {g, l, e} and the elements are ordered g < l < e, the bit array
〈0, 1, 1〉 denotes the subset {l, e}.

If n is less than or equal to the width of an integer on the architecture (or language)
we are working on, we can enumerate bit arrays by enumerating integers in [0, 2n

−1]
and examining the indices of bits set in these integers. These indices are determined
by first isolating the lowest set bit by computing y = x&~(x − 1), which is described
on Page on Page 24 and then getting the index by computing lg y.

1 void generate_power_set(const vector<int>& S) {

2 for (int i = 0; i < (1 << S.size()); ++i) {

3 int x = i;

4 while (x) {

5 int tar = log2(x & ~(x - 1));

6 cout << S[tar];
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7 if (x &= x - 1) {

8 cout << ’,’;

9 }

10 }

11 cout << endl;

12 }

13 }

Since each set takes O(n) time to print, the time complexity is O(n2n). In practice, it
would likely be faster to iterate through all the bits in x, one at a time.

Alternately, we can use recursion. The most natural recursive algorithm entails
recursively computing all subsets U of S − {x}, i.e., S without the element x (which
could be any element), and then adding x to each subset in U to create the set of
subsets V. (The base case is when S is empty, in which case we return {{}}.) The
subsets in U are distinct from those in V, and the final result is just U ∪V, which we
can then print. The number of recursive calls for a set of n elements, T(n) satisfies
T(n) = 2T(n − 1), with T(0) = 1, which solves to T(n) = 2n. Since each call takes time
O(n), the total time complexity is O(n2n).

The problem with the approach just described is that it usesO(n2n) space. The fact
that we only need to print the subsets, and not return them, suggests that a more space
optimal approach would be to compute the subsets incrementally. Conceptually, the
algorithm shown below passes two additional parameters, m and subset; the latter
indicates which of the first m elements of S must be part of the subsets begin created
from the remaining n − m elements. It iteratively prints subset, and then prints all
subsets of the remaining elements, with and without the (m + 1)-th element.

1 void generate_power_set(const vector<int>& S) {

2 vector<int> subset;

3 generate_power_set_helper(S, 0, &subset);

4 }

5

6 void generate_power_set_helper(const vector<int>& S, int m,

7 vector<int>* subset) {

8 if (!subset->empty()) {

9 // Print the subset.

10 copy(subset->cbegin(), subset->cend() - 1,

11 ostream_iterator <int>(cout, ","));

12 cout << subset->back();

13 }

14 cout << endl;

15

16 for (int i = m; i < S.size(); ++i) {

17 subset->emplace_back(S[i]);

18 generate_power_set_helper(S, i + 1, subset);

19 subset->pop_back();

20 }

21 }

The number of recursive calls, T(n) satisfies the recurrence T(n) = T(n − 1) + T(n −
2) + · · ·+ T(1) + T(0), which solves to T(n) = O(2n). Since we spendO(n) time within a
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call, the time complexity is O(n2n). The space complexity is O(n) which comes from
the maximum stack depth as well as the maximum size of a subset.

Variant 16.2.1 : Print all subsets of size k of {1, 2, 3, . . . ,n}.

Problem 16.3, pg. 77 : Implement a Sudoku solver. Your program should read an instance
of Sudoku from the command line. The command line argument is a sequence of 3-digit
strings, each encoding a row, a column, and a digit at that location.

Solution 16.3: We use a straight-forward application of the backtracking principle.
We traverse the 2D array entries one at a time. If the entry is empty, we try each
value for the entry, and see if the updated 2D array is still valid; if it is we recurse. If
all the entries have been filled, the search is successful.

In practice it is more efficient to see if a conflict results on adding a new entry
before adding it rather than adding it and seeing if a conflict is present. See the code
for details.

1 bool solve_Sudoku(vector<vector<int>>* A) {

2 if (!is_valid_Sudoku(*A)) {

3 cout << "Initial configuration violates constraints." << endl;

4 return false;

5 }

6

7 if (solve_Sudoku_helper(0, 0, A)) {

8 for (int i = 0; i < A->size(); ++i) {

9 copy((*A)[i].begin(), (*A)[i].end(), ostream_iterator <int>(cout, " "));

10 cout << endl;

11 }

12 return true;

13 } else {

14 cout << "No solution exists." << endl;

15 return false;

16 }

17 }

18

19 bool solve_Sudoku_helper(int i, int j, vector<vector<int>>* A) {

20 if (i == A->size()) {

21 i = 0; // starts a new row.

22 if (++j == (*A)[i].size()) {

23 return true; // Entire matrix has been filled without conflict.

24 }

25 }

26

27 // Skips nonempty entries.

28 if ((*A)[i][j] != 0) {

29 return solve_Sudoku_helper(i + 1, j, A);

30 }

31

32 for (int val = 1; val <= A->size(); ++val) {

33 // Note: practically , it’s substantially quicker to check if entry val

34 // conflicts with any of the constraints if we add it at (i,j) before

35 // adding it, rather than adding it and then calling is_valid_Sudoku.
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36 // The reason is that we know we are starting with a valid configuration ,

37 // and the only entry which can cause a problem is entryval at (i,j).

38 if (valid_to_add(*A, i, j, val)) {

39 (*A)[i][j] = val;

40 if (solve_Sudoku_helper(i + 1, j, A)) {

41 return true;

42 }

43 }

44 }

45

46 (*A)[i][j] = 0; // undo assignment.

47 return false;

48 }

49

50 bool valid_to_add(const vector<vector<int>>& A, int i, int j, int val) {

51 // Check row constraints.

52 for (int k = 0; k < A.size(); ++k) {

53 if (val == A[k][j]) {

54 return false;

55 }

56 }

57

58 // Check column constraints.

59 for (int k = 0; k < A.size(); ++k) {

60 if (val == A[i][k]) {

61 return false;

62 }

63 }

64

65 // Check region constraints.

66 int region_size = sqrt(A.size());

67 int I = i / region_size , J = j / region_size;

68 for (int a = 0; a < region_size; ++a) {

69 for (int b = 0; b < region_size; ++b) {

70 if (val == A[region_size * I + a][region_size * J + b]) {

71 return false;

72 }

73 }

74 }

75 return true;

76 }

Because the program is specialized to 9×9 grids, it does not make sense to speak of its
time complexity, since there is no notion of scaling with a size parameter. However,
since the problem of solving Sudoku generalized to n × n grids is NP-complete, it
should not be difficult to prove that the generalization of this algorithm to n×n grids
has exponential time complexity.

Variant 16.3.1 : Compute a placement of eight queens on an 8 × 8 chessboard in
which no two queens attack each other.
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Variant 16.3.2 : Compute a placement of 32 knights, or 14 bishops, 16 kings or eight
rooks on an 8 × 8 chessboard in which no two pieces attack each other.

Variant 16.3.3 : Compute the smallest number of queens that can be placed to attack
each uncovered square.

Problem 17.1, pg. 81 : You have an aggregate score s and W which specifies the points that
can be scored in an individual play. How would you find the number of combinations of
plays that result in an aggregate score of s? How would you compute the number of distinct
sequences of individual plays that result in a score of s?

Solution 17.1: Let W = {w0,w1, . . . ,wn−1} be the possible scores for individual plays.
Let X be the set {〈x0, x1, . . . , xn−1〉 |

∑n−1
i=0 wixi = s}. We want to compute |X|. Observe

that x0 can take any value in [0,
⌊

s
w0

⌋
]. Therefore, we can partition X into subsets of

vectors of the form {〈x0, x1, . . . , xn−1〉}, where 0 ≤ x0 ≤ b
s

w0
c. We can determine the

size of each of these subsets by solving the same problem in one fewer dimension—
specifically for each x0 we count the number of combinations in which s − x0w0 can
be achieved using plays {w1,w2, . . . ,wn−1}. The base case corresponds to computing
the number of ways in which a score t ≤ s can be formed with the wn−1-score plays,
which is 1 or 0, depending on whether wn−1 evenly divides t.

The algorithm outlined above has exponential complexity. We can use DP to
reduce its complexity—for each t ≤ s and d ∈ [1,n − 1] we cache the number of
combinations of ways in which wd, . . . ,wn−1 can be used to achieve t. By iterating
first over W and then over t, we can reuse space. This is the approach given below.

1 int count_combinations(int k, const vector<int>& score_ways) {

2 vector<int> combinations(k + 1, 0);

3 combinations[0] = 1; // one way to reach 0.

4 for (const int& score : score_ways) {

5 for (int j = score; j <= k; ++j) {

6 combinations[j] += combinations[j - score];

7 }

8 }

9 return combinations[k];

10 }

It should be clear that the time complexity is O(sn) (two loops, one to s, the other to
n) and space complexity is O(s) (the combinations array).

We can compute the number of permutations of scores which lead to an aggregate
score of s using recursion. Suppose we know for all u < v the number of permutations
of ways in which u can be achieved. We can achieve v points by first scoring v − wi

points followed by wi. Observe each of these is a distinct permutation. The recursion
can be converted to DP by caching the number of permutations yielding t for each
t < s.

1 int count_permutations(int k, const vector<int>& score_ways) {

2 vector<int> permutations(k + 1, 0);

3 permutations[0] = 1; // one way to reach 0.

4 for (int i = 0; i <= k; ++i) {

ElementsOfProgrammingInterviews.com



156 Solution 17.2

5 for (const int& score : score_ways) {

6 if (i >= score) {

7 permutations[i] += permutations[i - score];

8 }

9 }

10 }

11 return permutations[k];

12 }

The time and space complexities are the same as those for computing the number of
combinations, i.e., O(sn) and O(s), respectively.

Variant 17.1.1 : Suppose the final score is given in the form (s, s′), i.e., Team 1 scored s
points and Team 2 scored s′ points. How would you compute the number of distinct
scoring sequences which result in this score? For example, if the final score is (6, 3)
then Team 1 scores 3, Team 2 scores 3, Team 1 scores 3 is a scoring sequence which
results in this score.

Variant 17.1.2 : Suppose the final score is (s, s′). How would you compute the
maximum number of times the team that lead could have changed? For example, if
s = 10 and s′ = 6, the lead could have changed 4 times: Team 1 scores 2, then Team 2
scores 3 (lead change), then Team 1 scores 2 (lead change), then Team 2 scores 3 (lead
change), then Team 1 scores 3 (lead change) followed by 3.

Problem 17.2, pg. 81 : How many ways can you go from the top-left to the bottom-right in
an n ×m 2D array? How would you count the number of ways in the presence of obstacles,
specified by an n ×m Boolean 2D array B, where a true represents an obstacle.

Solution 17.2: This problem can be solved using a straightforward application of
DP: the number of ways to get to (i, j) is the number of ways to get to (i − 1, j) plus
the number of ways to get to (i, j− 1). (If i = 0 or j = 0, there is only one way to get to
(i, j).) The matrix storing the number of ways to get to (i, j) for the configuration in
Figure 17.2 on Page 81 is shown in Figure 21.4 on the next page. To fill in the i-th row
we do not need values from rows before i−1. Consequently, we do not need an n×m
2D array. Instead, we use two rows of storage, alternating between By symmetry,
the number of ways to get to (i, j) is the same as to get to ( j, i), so we use the smaller
of m and n to be the number of columns (which is the number of entries in a row).
This leads to the following algorithm.

1 int number_of_ways(int n, int m) {

2 if (n < m) {

3 swap(n, m);

4 }

5 vector<vector<int>> A(2, vector<int>(m, 1));

6 for (int i = 1; i < n; ++i) {

7 for (int j = 0; j < m; ++j) {

8 A[i & 1][j] = (i < 1 ? 0 : A[(i - 1) & 1][j]) +

9 (j < 1 ? 0 : A[i & 1][j - 1]);

10 }
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11 }

12 return A[(n - 1) & 1][m - 1];

13 }

The time complexity is O(mn), and the space complexity is O(min(m,n)).

1 1 1 1 1

1

1

1
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5

4

3 6 10 15

15

10 20 35

35 70

Figure 21.4: The number of ways to get from (0, 0) to (i, j) for 0 ≤ i, j ≤ 4.

Another way of deriving the same answer is to use the fact that each path from
(0, 0) to (n − 1,m − 1) is a sequence of m − 1 horizontal steps and n − 1 vertical steps.
There are

(n+m−2
n−1

)
=

(n+m−2
m−1

)
= (n+m−2)!

(n−1)!(m−1)! such paths.
Our first solution generalizes trivially to obstacles: if there is an obstacle at (i, j)

there are zero ways of getting from (0, 0) to (i, j).

1 // Given the dimensions of A, n and m, and B, return the number of ways

2 // from A[0][0] to A[n - 1][m - 1] considering obstacles.

3 int number_of_ways_with_obstacles(int n, int m,

4 const vector<deque<bool>> &B) {

5 vector<vector<int>> A(n, vector<int>(m, 0));

6 if (B[0][0]) { // no way to start from (0, 0) if B[0][0] == true.

7 return 0;

8 } else {

9 A[0][0] = 1;

10 }

11 for (int i = 0; i < n; ++i) {

12 for (int j = 0; j < m; ++j) {

13 if (B[i][j] == 0) {

14 A[i][j] += (i < 1 ? 0 : A[i - 1][j]) + (j < 1 ? 0 : A[i][j - 1]);

15 }

16 }

17 }

18 return A.back().back();

19 }

The time complexity is O(nm).

Variant 17.2.1 : A decimal number is a sequence of digits, i.e., a sequence over
{0, 1, 2, . . . , 9}. The sequence has to be of length 1 or more, and the first element in the
sequence cannot be 0. Call a decimal number D monotone if D[i] ≤ D[i+1], 0 ≤ i < |D|.
Write a function which takes as input a positive integer k and computes the number
of decimal numbers of length k that are monotone.
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Variant 17.2.2 : Call a decimal number D, as defined above, strictly monotone if
D[i] < D[i + 1], 0 ≤ i < |D|. Write a function which takes as input a positive integer k
and computes the number of decimal numbers of length k that are strictly monotone.

Problem 17.3, pg. 82 : Design an algorithm for the knapsack problem that selects a subset of
items that has maximum value and weighs at most w ounces. All items have integer weights
and values.

Solution 17.3: Let V[i,w] be the maximum value that can be packed with weight
less than or equal to w using the first i clocks. Then V[i,w] satisfies the following
recurrence:

V[i,w] =

{
max (V[i − 1,w],V[i − 1,w − wi] + vi) , if wi ≤ w;
V[i − 1,w], otherwise.

For i = 0 or w = 0, we set V[i,w] = 0. This DP procedure computes V[n,w] in
O(nw) time, and uses O(nw) space. The space complexity can be improved to O(w)
by using a one-dimensional array to store the current optimal result and rewriting
the next step result back to this array.

1 struct Item {

2 int weight, value;

3 };

4

5 int knapsack(int w, const vector<Item>& items) {

6 vector<int> V(w + 1, 0);

7 for (int i = 0; i < items.size(); ++i) {

8 for (int j = w; j >= items[i].weight; --j) {

9 V[j] = max(V[j], V[j - items[i].weight] + items[i].value);

10 }

11 }

12 return V[w];

13 }

Variant 17.3.1 : Solve the knapsack problem when the thief can take a fractional
amount of an item.

Problem 17.4, pg. 82 : Given a dictionary, i.e., a set of strings, and a string s, design an
efficient algorithm that checks whether s is the concatenation of a sequence of dictionary
words. If such a concatenation exists, your algorithm should output it.

Solution 17.4: This is a straightforward DP problem. If the input string s has length
n, we build a table T of length n such that T[k] is a Boolean indicating whether the
substring s(0, k) can be decomposed into a sequence of valid words.

We can build a hash table of all the valid words to determine if a string is a valid
word. Then T[k] holds iff one of the following two conditions is true:
− Substring s(0, k) is a valid word.
− There exists a j ∈ [0, k − 1] such that T[ j] is true and s( j + 1, k) is a valid word.
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This tells us if we can break a given string into valid words, but does not yield
the words themselves. We can obtain the words with a little more book-keeping. In
table T, along with the Boolean value, we also store the length of the last word in the
string.

1 vector<string> word_breaking(const string& s,

2 const unordered_set <string >& dict) {

3 // T[i] is the length of the last string in the decomposition of s(0, i).

4 vector<int> T(s.size(), 0);

5 for (int i = 0; i < s.size(); ++i) {

6 // Set T[i] if s(0, i) is a valid word.

7 if (dict.find(s.substr(0, i + 1)) != dict.cend()) {

8 T[i] = i + 1;

9 }

10

11 // Set T[i] if T[j] != 0 and s(j + 1, i) is a valid word.

12 for (int j = 0; j < i && T[i] == 0; ++j) {

13 if (T[j] != 0 && dict.find(s.substr(j + 1, i - j)) != dict.cend()) {

14 T[i] = i - j;

15 }

16 }

17 }

18

19 vector<string> ret;

20 // s can be assembled by valid words.

21 if (T.back()) {

22 int idx = s.size() - 1;

23 while (idx >= 0) {

24 ret.emplace_back(s.substr(idx - T[idx] + 1, T[idx]));

25 idx -= T[idx];

26 }

27 reverse(ret.begin(), ret.end());

28 }

29 return ret;

30 }

For each k we check for each j < k whether s( j + 1, k) is a valid word, and each such
check requires O(k − j) time. This implies the time complexity is O(n3). Let W be the
length of the longest valid word. By changing j to range from k −W to k − 1, we can
improve the time complexity to O(n2W). Note that we are assuming the dictionary
is specified as a hash table.

If we want all possible decompositions, we can store all possible values of j that
gives us a correct break with each position. However, the number of possible decom-
positions can be exponential here. This is exemplified by the string “itsitsitsits. . . ”.

Variant 17.4.1 : Devise an O(nW) algorithm for word breaking.

Problem 17.5, pg. 82 : Given an array A of n numbers, find a longest subsequence
〈i0, . . . , ik−1〉 such that i j < i j+1 and A[i j] ≤ A[i j+1] for any j ∈ [0, k − 2].

Solution 17.5: We present two solutions, an O(n2), and an O(n log n) one.
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We first describe the O(n2) solution, which is a straightforward application of
dynamic programming. Let si be the length of the longest nondecreasing subsequence
of A that ends at A[i] (specifically, A[i] is included in this subsequence). Then we can
write the following recurrence:

si = max
j∈[0,i−1]

(
s j + 1, if A[ j] ≤ A[i];
1, otherwise.

)
We use this recurrence to fill up a table for si. The time complexity of this algorithm

is O(n2). If we want the sequence as well, for each i, in addition to storing the length
of the sequence, we store the index of the last element of sequence that we extended
to get the current sequence. Here is an implementation of this algorithm:

1 vector<int> longest_nondecreasing_subsequence(const vector<int>& A) {

2 // Empty array.

3 if (A.empty() == true) {

4 return A;

5 }

6

7 vector<int> longest_length(A.size(), 1), previous_index(A.size(), -1);

8 int max_length_idx = 0;

9 for (int i = 1; i < A.size(); ++i) {

10 for (int j = 0; j < i; ++j) {

11 if (A[i] >= A[j] && longest_length[j] + 1 > longest_length[i]) {

12 longest_length[i] = longest_length[j] + 1;

13 previous_index[i] = j;

14 }

15 }

16 // Record the index where longest subsequence ends.

17 if (longest_length[i] > longest_length[max_length_idx]) {

18 max_length_idx = i;

19 }

20 }

21

22 // Build the longest nondecreasing subsequence.

23 int max_length = longest_length[max_length_idx];

24 vector<int> ret(max_length);

25 while (max_length > 0) {

26 ret[--max_length] = A[max_length_idx];

27 max_length_idx = previous_index[max_length_idx];

28 }

29 return ret;

30 }

We now describe a subtler algorithm that has O(n log n) complexity. It is not
based on dynamic programming—it is a greedy algorithm and uses binary search.
Let Mi, j be the smallest possible tail value for any nondecreasing subsequence of
length j using array elements A[0],A[1], . . . ,A[i]. Note that for any i, we must have
Mi,1 ≤Mi,2 ≤ · · · ≤Mi, j.

We process A’s elements iteratively. When processing A[i + 1], we look for the
largest j such that Mi, j ≤ A[i + 1]. First, assume such a j exists. Then we can construct
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a j + 1 length subsequence that ends at A[i + 1]. If no length j + 1 nondecreasing
subsequence exists in A[0],A[1], . . . ,A[i], then Mi+1, j+1 must be A[i + 1], otherwise it
remains equal to Mi, j+1. Furthermore, Mi+1, j′ remains unchanged for all j′ ≤ j.

Now suppose there does not exist j such that Mi, j ≤ A[i + 1]. This can only be true
if A[i + 1] is the unique smallest element in A[0 : i + 1]. Therefore, we set Mi+1,1 to
A[i + 1].

Therefore, processing A[i + 1] entails a binary search for j and then an update to
Mi+1, j+1 if possible, leading to an O(n log n) time complexity.

Code implementing this procedure is given below; the appropriate entries from
M are maintained in the tail_values vector.

1 int longest_nondecreasing_subsequence(const vector<int>& A) {

2 vector<int> tail_values;

3 for (const int& a : A) {

4 auto it = upper_bound(tail_values.begin(), tail_values.end(), a);

5 if (it == tail_values.end()) {

6 tail_values.emplace_back(a);

7 } else {

8 *it = a;

9 }

10 }

11 return tail_values.size();

12 }

ε-Variant 17.5.1 : Define a sequence of numbers 〈a0, a1, . . . , an−1〉 to be alternating if ai <

ai+1 for even i and ai > ai+1 for odd i. Given an array of numbers A of length n, find a
longest subsequence 〈i0, . . . , ik−1〉 such that 〈A[i0],A[i1], . . . ,A[ik−1]〉 is alternating.

ε-Variant 17.5.2 : Define a sequence of numbers 〈a0, a1, . . . , an−1〉 to be weakly alternat-
ing if no three consecutive terms in the sequence are increasing or decreasing. Given
an array of numbers A of length n, find a longest subsequence 〈i0, . . . , ik−1〉 such that
〈A[i0],A[i1], . . . ,A[ik−1]〉 is weakly alternating.

ε-Variant 17.5.3 : Define a sequence of numbers 〈a0, a1, . . . , an−1〉 to be convex if ai <
ai−1+ai+1

2 , for 1 ≤ i ≤ n − 2. Given an array of numbers A of length n, find a longest
subsequence 〈i0, . . . , ik−1〉 such that 〈A[i0],A[i1], . . . ,A[ik−1]〉 is convex.

ε-Variant 17.5.4 : Define a sequence of numbers 〈a0, a1, . . . , an−1〉 to be bitonic if there
exists k such that ai < ai+1, for 0 ≤ i < k and ai > ai+1, for k ≤ i < n − 1. Given an
array of numbers A of length n, find a longest subsequence 〈i0, . . . , ik−1〉 such that
〈A[i0],A[i1], . . . ,A[ik−1]〉 is bitonic.

ε-Variant 17.5.5 : Define a sequence of points in the plane to be ascending if each point
is above and to the right of the previous point. How would you find a maximum
ascending subset of a set of points in the plane?
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Problem 18.1, pg. 84 : Given a set of symbols with corresponding frequencies, find a code
book that has the smallest average code length.

Solution 18.1: Huffman coding yields an optimum solution to this problem. (There
may be other optimum codes as well.) Huffman coding proceeds in three steps:

(1.) Sort characters in increasing order of frequencies and create a binary tree node
for each character. Denote the set just created by S.

(2.) Create a new node n whose children are the two nodes with smallest frequencies
and assign n’s frequency to be the sum of the frequencies of its children.

(3.) Remove the children from S and add n to S. Repeat from Step (2.) till S consists
of a single node, which is the root.

Mark all the left edges with 0 and the right edges with 1. The path from the root
to a leaf node yields the bit string encoding the corresponding character.

We use a min-heap of candidate nodes to represent S. Since each invocation of
Steps (2.) and (3.) requires two extract-min and one insert operation, we can find the
Huffman codes in O(n log n) time. Here is an implementation of Huffman coding.

1 struct Symbol {

2 char c;

3 double prob;

4 string code;

5 };

6

7 struct BinaryTreeNode {

8 double prob;

9 Symbol* s;

10 shared_ptr <BinaryTreeNode > left, right;

11 };

12

13 struct Compare {

14 bool operator()(const shared_ptr <BinaryTreeNode >& lhs,

15 const shared_ptr <BinaryTreeNode >& rhs) {

16 return lhs->prob > rhs->prob;

17 }

18 };

19

20 void Huffman_encoding(vector<Symbol >* symbols) {

21 // Initially assign each symbol into min->heap.

22 priority_queue <shared_ptr <BinaryTreeNode >,

23 vector<shared_ptr <BinaryTreeNode >>,

24 Compare> min_heap;

25 for (auto& s : *symbols) {

26 min_heap.emplace(new BinaryTreeNode{s.prob, &s, nullptr, nullptr});

27 }

28

29 // Keep combining two nodes until there is one node left.

30 while (min_heap.size() > 1) {

31 shared_ptr <BinaryTreeNode > l = min_heap.top();

32 min_heap.pop();

33 shared_ptr <BinaryTreeNode > r = min_heap.top();

34 min_heap.pop();

35 min_heap.emplace(new BinaryTreeNode{l->prob + r->prob, nullptr, l, r});
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36 }

37

38 // Traverse the binary tree and assign code.

39 assign_huffman_code(min_heap.top(), string());

40 }

41

42 // Traverse tree and assign code.

43 void assign_huffman_code(const shared_ptr <BinaryTreeNode >& r,

44 const string& s) {

45 if (r) {

46 // This node (i.e.,leaf) contains symbol.

47 if (r->s) {

48 r->s->code = s;

49 } else { // non-leaf node.

50 assign_huffman_code(r->left, s + ’0’);

51 assign_huffman_code(r->right, s + ’1’);

52 }

53 }

54 }

Applying this algorithm to the frequencies for English characters presented in
Table 18.1 on Page 85 yields the Huffman tree in Figure 21.5. The path from root to
leaf yields that character’s Huffman code, which is listed in Table 21.1 on the next
page. For example, the codes for t, e, and z are 000, 100, and 001001000, respectively.

dl

ao

gypb

in

e

shr

cumwf

k

jxqz

v

t

Figure 21.5: A Huffman tree for the English characters, assuming the frequencies given in Table 18.1
on Page 85.

The codebook is explicitly given in Table 21.1 on the following page. The average
code length for this coding is 4.205. In contrast, the trivial coding takes dlog 26e = 5
bits for each character.

It is exceedingly unlikely that you would be asked for a rigorous proof of opti-
mality would be asked in an interview setting. The reasoning behind the Huffman
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Table 21.1: Huffman codes for English characters, assuming the frequencies given in Table 18.1 on
Page 85.

Character Huffman code Character Huffman code Character Huffman code
a 1110 j 001001011 s 0111
b 110000 k 0010011 t 000
c 01001 l 11110 u 01000
d 11111 m 00111 v 001000
e 100 n 1010 w 00110
f 00101 o 1101 x 001001010
g 110011 p 110001 y 110010
h 0110 q 001001001 z 001001000
i 1011 r 0101

algorithm yielding the minimum average code length is based on a induction on the
number of symbols. The induction step itself makes use of proof by contradiction,
with the two leaves in the Huffman tree corresponding to the rarest symbols playing
a central role.

Problem 18.2, pg. 86 : Design an algorithm that takes as input an array A and a number t,
and determines if A 3-creates t.

Solution 18.2: First, we consider the problem of computing a pair of entries which
sum to K. Assume A is sorted.We start with the pair consisting of the first element and
the last element: (A[0],A[n−1]). Let s = A[0]+A[n−1]. If s = K, we are done. If s < K,
we increase the sum by moving to pair (A[1],A[n− 1]). We need never consider A[0];
since the array is sorted, for all i,A[0]+A[i] ≤ A[0]+A[n−1] = K < s. If s > K, we can
decrease the sum by considering the pair (A[0],A[n−2]); by analogous reasoning, we
need never consider A[n − 1] again. We iteratively continue this process till we have
found a pair that sums up to K or the indices meet, in which case the search ends.
This solution works in O(n) time and O(1) space in addition to the space needed to
store A.

Now we describe a solution to the problem of finding three entries which sum to
t. We sort A and for each A[i], search for indices j and k such that A[ j]+A[k] = t−A[i].
The additional space needed is O(1), and the time complexity is the sum of the time
taken to sort,O(n log n), and then to run theO(n) algorithm described in the previous
paragraph n times (one for each entry), which is O(n2) overall. The code for this
approach is shown below.

1 bool has_3_sum(vector<int> A, int t) {

2 sort(A.begin(), A.end());

3

4 for (int a : A) {

5 // Find if the sum of two numbers in A equals to t - a.

6 if (has_2_sum(A, t - a)) {

7 return true;

8 }

9 }

10 return false;

11 }
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12

13 bool has_2_sum(const vector<int>& A, int t) {

14 int j = 0, k = A.size() - 1;

15

16 while (j <= k) {

17 if (A[j] + A[k] == t) {

18 return true;

19 } else if (A[j] + A[k] < t) {

20 ++j;

21 } else { // A[j] + A[k] > t.

22 --k;

23 }

24 }

25 return false;

26 }

Surprisingly, it is possible, in theory, to improve the time complexity when the
entries in A are nonnegative integers in a small range, specifically, the maximum
entry is O(n). The idea is to determine all possible 3-sums by encoding the array
as a polynomial PA(x) =

∑n−1
i=0 xA[i]. The powers of x that appear in the polynomial

PA(x)×PA(x) corresponds to sums of pairs of elements in A; similarly, the powers of x
in PA(x)×PA(x)×PA(x) correspond to sums of triples of elements in A. Two n-degree
polynomials can be multiplied in O(n log n) time using the fast Fourier Transform
(FFT). The details are long and tedious, and the approach is unlikely to do well in
practice.

ε-Variant 18.2.1 : Solve the same problem when the three elements must be distinct.
For example, if A = 〈5, 2, 3, 4, 3〉 and t = 9, then A[2] + A[2] + A[2] is not acceptable,
A[2] + A[2] + A[4] is not acceptable, but A[1] + A[2] + A[3] and A[1] + A[3] + A[4] are
acceptable.

Variant 18.2.2 : Solve the same problem when k is an additional input.

Variant 18.2.3 : Write a function that takes as input an array of integers A and
an integer T, and returns a 3-tuple (A[p],A[q],A[r]) where p, q, r are all distinct,
minimizing |T − (A[p] + A[q] + A[r])|, and A[p] ≤ A[r] ≤ A[s].

Problem 18.3, pg. 86 : Let A be an array of n numbers encoding the heights of adjacent
buildings of unit width. Design an algorithm to compute the area of the largest rectangle
contained in this skyline, i.e., compute maxi< j(( j − i + 1) ×min j

k=i A[k]).

Solution 18.3: A brute-force approach is to take each (i, j) pair, find the minimum of
subarray A[i : j], and multiply that by j− i+1. This has time complexityO(n3), which
can improved to O(n2) by iterating over i and then j ≥ i and tracking the minimum
height of buildings from i to j, inclusive.

We now describe a relatively simple O(n) time algorithm to compute the largest
rectangle. We iterate forward through A, keeping a subset of indices seen so far in a
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stack S. Specifically, suppose we have completed iterating up to and including index
i − 1.

If A[i] is greater than or equal to the element corresponding to the index at the top
of the stack, we push i on to S and continue. Otherwise, we pop S till A[i] is greater
than or equal to the element corresponding to the top of S. Note that this rule ensures
that throughout the computation the array elements corresponding to indices in the
stack are in nondecreasing order from the bottom to top of the stack. After all indices
j in the stack for which A[ j] > A[i] have been popped, we push i onto the stack and
continue.

Now we describe the computations performed for each pop.
For each i, for every index j that is popped, because A[i] < A[ j], no rectangle

of height A[ j] that includes j can extend past i − 1. Furthermore, there can be no
k, j < k < i such that A[k] < A[ j], or we would have popped j earlier. Therefore, the
farthest to the right a rectangle of height A[ j] that includes j can reach is exactly i− 1.

Now we consider how far to the left a rectangle of height A[ j] that includes j can
reach. There are three possibilities.
− There is no entry below j in the stack. The farthest to the left a rectangle of

height A[ j] that begins at j can extend to is 0.
− There is an entry j′ below j in the stack, and A[ j′] < A[ j]. Then the farthest to

the left a rectangle of height A[ j] that begins at j can extend to is j′ + 1. (There
cannot be k, j′ < k < j such that A[k] < A[ j′], because we would have popped j′

when processing k.) The rectangle from j′+1 to i−1 is the widest any rectangle
including j whose height is A[ j]—it is blocked on each side from going further.

− There is an entry j′ below j in the stack, and A[ j′] = A[ j]. As before, the rectangle
from j′ + 1 to i − 1 is entirely under the skyline. It is not the widest rectangle
including j whose height is A[ j], since it is not blocked by j′. However, after j
is processed j′ is guaranteed to be processed (since A[ j′] = A[ j] > A[i]), and we
will eventually identify the widest rectangle including j whose height is A[ j]
when processing i.

The computation described above is almost complete. There is one possibility
that it does not consider, namely that the stack is not empty when we reach the end.
The computation is analogous to the iteration over i. Let j be the index at the top of
the stack. Suppose there is an entry j′ below j in the stack. Then the widest rectangle
including j with height A[ j] extends up to and including n − 1 on the right. On the
left, it extends to at least j′ + 1, and further, if A[ j′] = A[ j]. If there is no entry below
j, then the widest rectangle j with height A[ j] extends up to and including 0 on the
left.

Through the entire computation, we compare the area of the rectangles computed
to the maximum recorded so far and conditionally update that maximum. Since a
largest rectangle under the skyline corresponds to some index, and for each index
we identify the area of the largest rectangle including that index, with correspond-
ing height, the algorithm described above correctly computes the area of a largest
rectangle under the skyline.
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The processing performed during the iteration over i = 0 to n − 1 is very similar
to the processing performed when i = n. It can be unified into a single loop using
appropriate loop conditions, as show below.

1 int calculate_largest_rectangle(const vector<int>& A) {

2 stack<int> s;

3 int max_area = 0;

4 for (int i = 0; i <= A.size(); ++i) {

5 while (!s.empty() && (i == A.size() || A[i] < A[s.top()])) {

6 int height = A[s.top()];

7 s.pop();

8 max_area = max(max_area , height * (s.empty() ? i : i - s.top() - 1));

9 }

10 s.emplace(i);

11 }

12 return max_area;

13 }

The time complexity is O(n). In the forward pass, the time spent for each i is
proportional to the number of pushes and pops performed in that iteration. Although
for some i we may perform multiple pops, in total we perform exactly n pushes and
at most n pops. This is because in the forward iteration, each i is added once to the
stack and cannot be popped more than once. The time complexity of the second
stage is also O(n) since there are at most n elements in the stack, and the time to
process each one isO(1), which yields the overall time complexity ofO(n). The space
complexity is O(n), which is the largest the stack can grow to, e.g., if A is sorted in
ascending order.

ε-Variant 18.3.1 : Find the largest square under the skyline.

Problem 19.1, pg. 90 : Given a 2D array of black and white entries representing a maze with
designated entrance and exit points, find a path from the entrance to the exit, if one exists.

Solution 19.1: Model the maze as an undirected graph. Each vertex corresponds to a
white pixel. We will index the vertices based on the coordinates of the corresponding
pixel; so, vertex vi, j corresponds to the 2D array entry (i, j). Use edges to model
adjacent pixels: vi, j is connected to vertices vi+1, j, vi, j+1, vi−1, j, and vi, j−1, assuming these
vertices exist—vertex va,b does not exist if the corresponding pixel is black or the
coordinates (a, b) lie outside the image.

Now, run a DFS starting from the vertex corresponding to the entrance. If at
some point, we discover the exit vertex in the DFS, then there exists a path from the
entrance to the exit. If we implement recursive DFS then the path would consist of
all the vertices in the call stack corresponding to previous recursive calls to the DFS
routine.

This problem can also be solved using BFS from the entrance vertex on the same
graph model. The BFS tree has the property that the computed path will be a shortest
path from the entrance. However BFS is more difficult to implement than DFS since
in DFS, the compiler implicitly handles the DFS stack, whereas in BFS, the queue has
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to be explicitly coded. Since the problem did not call for a shortest path, it is better
to use DFS.

1 struct Coordinate {

2 bool operator==(const Coordinate& that) const {

3 return x == that.x && y == that.y;

4 }

5

6 int x, y;

7 };

8

9 vector<Coordinate > search_maze(vector<vector<int>> maze,

10 const Coordinate& s,

11 const Coordinate& e) {

12 vector<Coordinate > path;

13 maze[s.x][s.y] = 1;

14 path.emplace_back(s);

15 if (!search_maze_helper(s, e, &maze, &path)) {

16 path.pop_back();

17 }

18 return path; // empty path means no path between s and e.

19 }

20

21 // Perform DFS to find a feasible path.

22 bool search_maze_helper(const Coordinate& cur,

23 const Coordinate& e,

24 vector<vector<int>>* maze,

25 vector<Coordinate >* path) {

26 if (cur == e) {

27 return true;

28 }

29

30 const array<array<int, 2>, 4> shift = {

31 {{{0, 1}}, {{0, -1}}, {{1, 0}}, {{-1, 0}}}};

32

33 for (const auto& s : shift) {

34 Coordinate next{cur.x + s[0], cur.y + s[1]};

35 if (is_feasible(next, *maze)) {

36 (*maze)[next.x][next.y] = 1;

37 path->emplace_back(next);

38 if (search_maze_helper(next, e, maze, path)) {

39 return true;

40 }

41 path->pop_back();

42 }

43 }

44 return false;

45 }

46

47 // Check cur is within maze and is a white pixel.

48 bool is_feasible(const Coordinate& cur, const vector<vector<int>>& maze) {

49 return cur.x >= 0 && cur.x < maze.size() && cur.y >= 0 &&

50 cur.y < maze[cur.x].size() && maze[cur.x][cur.y] == 0;

51 }
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The time complexity is the same as that for DFS, namely O(|V| + |E|).

Problem 19.2, pg. 90 : Implement a routine that takes a n × m Boolean array A together
with an entry (x, y) and flips the color of the region associated with (x, y). See Figure 19.6 on
Page 91 for an example of flipping.

Solution 19.2: Conceptually, this problem is very similar to that of exploring an
undirected graph. Entries can be viewed as vertices, and neighboring vertices are
connected by edges.

For the current problem, we are searching for all vertices whose color is the same
as that of (x, y) that are reachable from (x, y). Breadth-first search is natural when
starting with a set of vertices. Specifically, we can use a queue to store such vertices.
The queue is initialized to (x, y). The queue is popped iteratively. Call the popped
point p. First, we record p’s initial color, and then flip its color. Next we examine
p neighbors. Any neighbor which is the same color as p’s initial color is added to
q. The computation ends when q is empty. Correctness follows from the fact that
any point that is added to the queue is reachable from (x, y) via a path consisting of
points of the same color, and all points reachable from (x, y) via points of the same
color will eventually be added to the queue.

1 void flip_color(int x, int y, vector<deque<bool>> *A) {

2 const array<array<int, 2>, 4> dir = {{{{0, 1}}, {{0, -1}},

3 {{1, 0}}, {{-1, 0}}}};

4 const bool color = (*A)[x][y];

5

6 queue<pair<int, int>> q;

7 (*A)[x][y] = !(*A)[x][y]; // flips.

8 q.emplace(x, y);

9 while (!q.empty()) {

10 auto curr(q.front());

11 for (const auto& d : dir) {

12 const pair<int, int> next(curr.first + d[0], curr.second + d[1]);

13 if (next.first >= 0 && next.first < A->size() &&

14 next.second >= 0 && next.second < (*A)[next.first].size() &&

15 (*A)[next.first][next.second] == color) {

16 // Flips the color.

17 (*A)[next.first][next.second] = !(*A)[next.first][next.second];

18 q.emplace(next);

19 }

20 }

21 q.pop();

22 }

23 }

The time complexity is the same as that of BFS, i.e., O(mn). The space complexity is a
little better than the worst case for BFS, since there are at most O(m + n) vertices that
are at the same distance from a given entry.

We also provide a recursive solution which is in the spirit of DFS. It does not need
a queue but implicitly uses a stack, namely the function call stack.

1 void flip_color(int x, int y, vector<deque<bool>> *A) {
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2 const array<array<int, 2>, 4> dir = {{{{0, 1}}, {{0, -1}},

3 {{1, 0}}, {{-1, 0}}}};

4 const bool color = (*A)[x][y];

5

6 (*A)[x][y] = !(*A)[x][y]; // flips.

7 for (const auto& d : dir) {

8 const int nx = x + d[0], ny = y + d[1];

9 if (nx >= 0 && nx < A->size() && ny >= 0 && ny < (*A)[nx].size() &&

10 (*A)[nx][ny] == color) {

11 flip_color(nx, ny, A);

12 }

13 }

14 }

The time complexity is the same as that of DFS.
Both the algorithms given above differ slightly from traditional BFS and DFS

algorithms. The reason is that we have a color field already available, and hence
do not need the auxiliary color field traditionally associated with vertices BFS and
DFS. Furthermore, since we are simply determining reachability, we only need two
colors, whereas BFS and DFS traditionally use three colors to track state. (The use of
an additional color makes it possible, for example, to answer questions about cycles
in directed graphs, but that is not relevant here.)

ε-Variant 19.2.1 : Design an algorithm for computing the black region that contains
the most points.

ε-Variant 19.2.2 : Design an algorithm that takes a point (a, b), sets A(a, b) to black,
and returns the size of the black region that contains the most points. Assume this
algorithm will be called multiple times, and you want to keep the aggregate run time
as low as possible.

Problem 19.3, pg. 90 : Given a dictionary D and two strings s and t, write a function
to determine if s produces t. Assume that all characters are lowercase alphabets. If s does
produce t, output the length of a shortest production sequence; otherwise, output −1.

Solution 19.3: Define the undirected graph G = (D,E) by (u, v) ∈ E iff nu = nv, where
nu and ns are the lengths of u and v, respectively, and u and v differ in one character.
(Note that the relation “differs in one character” is symmetric, which is why the
graph is undirected.)

A production sequence is simply a path in G, so what we need is a shortest path
from s to t in G. Shortest paths in an undirected graph are naturally computed using
BFS. We use a queue and a hash table of vertices (which indicates if a vertex has
already been visited). We enumerate neighbors of a vertex v by an outer loop that
iterates over each position in v and an inner loop that iterates over each choice of
character for that position.

1 // Use BFS to find the least steps of transformation.

2 int transform_string(unordered_set <string> D,
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3 const string& s,

4 const string& t) {

5 queue<pair<string, int>> q;

6 D.erase(s); // mark s as visited by erasing it in D.

7 q.emplace(s, 0);

8

9 while (!q.empty()) {

10 pair<string, int> f(q.front());

11 // Return if we find a match.

12 if (f.first == t) {

13 return f.second; // number of steps reaches t.

14 }

15

16 // Try all possible transformations of f.first.

17 string str = f.first;

18 for (int i = 0; i < str.size(); ++i) {

19 for (int j = 0; j < 26; ++j) { // iterates through ’a’ ~ ’z’.

20 str[i] = ’a’ + j; // change the (i + 1)-th char of str.

21 auto it(D.find(str));

22 if (it != D.end()) {

23 D.erase(it); // mark str as visited by erasing it.

24 q.emplace(str, f.second + 1);

25 }

26 }

27 str[i] = f.first[i]; // revert the change of str.

28 }

29 q.pop();

30 }

31

32 return -1; // cannot find a possible transformations.

33 }

The number of vertices is the number d of words in the dictionary. The number
of edges is, in the worst case, O(d2). The time complexity is that of BFS, namely
O(d + d2) = O(d2). (If the string length n is less than d then the number of edges drops
to O(n), implying an O(nd) bound.)

Problem 19.4, pg. 92 : Given an instance of the task scheduling problem, compute the least
amount of time in which all the tasks can be performed, assuming an unlimited number of
servers. Explicitly check that the system is feasible.

Solution 19.4: This problem is naturally modeled using a directed graph. Vertices
correspond to tasks, and an edge from u to v indicates that u must be completed
before v can begin. The system is infeasible iff a cycle is present in the derived graph.

We can check the presence of a cycle by performing a DFS. If no cycle is present,
the DFS numbering yields a topological ordering of the graph, i.e., an ordering of the
vertices such that v follows u whenever an edge is present from u to v. Specifically,
the DFS finishing time gives a topological ordering in reverse order. Therefore, both
testing for a cycle and computing a topological ordering can be performed inO(n+m)
time, where n and m are the number of vertices and edges in the graph, respectively.
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Since the number of servers is unlimited, Ti can be completed τi time after all the
tasks it depends on have completed. Therefore, we can compute the soonest each
task can complete by processing tasks in topological order, starting from the tasks
that depend on no other tasks. If no such tasks exist, there must be a sequence of
tasks starting and ending at the same task, such that each task requires the previous
task to be completed before it can be started, i.e., the system is infeasible.

Problem 20.1, pg. 94 : Write Java code in which the two threads, running concurrently,
print the numbers from 1 to 100 in order.

Solution 20.1: A brute-force solution is to use a lock which is repeatedly captured
by the threads. A single variable, protected by the lock, indicates who went last. The
drawback of this approach is that it employs the busy waiting antipattern: processor
time that could be used to execute a different task is instead wasted on useless activity.

Below we present a solution based on the same idea, but one that avoids busy
locking by using wait() and notify() primitives.

1 static class OddEvenMonitor {

2 public static final boolean ODD_TURN = true;

3 public static final boolean EVEN_TURN = false;

4 private boolean turn = ODD_TURN;

5

6 public synchronized void waitTurn(boolean oldTurn) {

7 while (turn != oldTurn) {

8 try {

9 wait();

10 } catch(Exception e) {

11 }

12 }

13 }

14

15 public synchronized void toggleTurn() {

16 turn ^= true;

17 notify();

18 }

19 }

20

21 static class OddThread extends Thread {

22 private final OddEvenMonitor monitor;

23

24 public OddThread(OddEvenMonitor monitor) {

25 this.monitor = monitor;

26 }

27 @Override

28 public void run() {

29 for (int i = 1; i <= 100; i+=2) {

30 monitor.waitTurn(OddEvenMonitor.ODD_TURN);

31 System.out.println(i);

32 monitor.toggleTurn();

33 }

34 }

35 }
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36

37 static class EvenThread extends Thread {

38 private final OddEvenMonitor monitor;

39

40 public EvenThread(OddEvenMonitor monitor) {

41 this.monitor = monitor;

42 }

43 @Override

44 public void run() {

45 for (int i = 2; i <= 100; i+=2) {

46 monitor.waitTurn(OddEvenMonitor.EVEN_TURN);

47 System.out.println(i);

48 monitor.toggleTurn();

49 }

50 }

51 }

Problem 20.2, pg. 94 : Develop a Timer class that manages the execution of deferred tasks.
The Timer constructor takes as its argument an object which includes a Run method and
a name field, which is a string. Timer must support—(1.) starting a thread, identified by
name, at a given time in the future; and (2.) canceling a thread, identified by name (the cancel
request is to be ignored if the thread has already started).

Solution 20.2: The two aspects to the design are the data structures and the locking
mechanism.

We use two data structures. The first is a min-heap in which we insert key-value
pairs: the keys are run times and the values are the thread to run at that time. A
dispatch thread runs these threads; it sleeps from call to call and may be woken up
if a thread is added to or deleted from the pool. If woken up, it advances or retards
its remaining sleep time based on the top of the min-heap. On waking up, it looks
for the thread at the top of the min-heap—if its launch time is the current time, the
dispatch thread deletes it from the min-heap and executes it. It then sleeps till the
launch time for the next thread in the min-heap. (Because of deletions, it may happen
that the dispatch thread wakes up and finds nothing to do.)

The second data structure is a hash table with thread ids as keys and entries in
the min-heap as values. If we need to cancel a thread, we go to the min-heap and
delete it. Each time a thread is added, we add it to the min-heap; if the insertion is
to the top of the min-heap, we interrupt the dispatch thread so that it can adjust its
wake up time.

Since the min-heap is shared by the update methods and the dispatch thread, we
need to lock it. The simplest solution is to have a single lock that is used for all read
and writes into the min-heap and the hash table.

Problem 20.3, pg. 94 : Implement a synchronization mechanism for the first readers-writers
problem.

Solution 20.3: We want to keep track of whether the string is being read from, as
well as whether the string is being written to. Additionally, if the string is being read
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from, we want to know the number of concurrent readers. We achieve this with a
pair of locks—LR and LW—and a read counter locked by LR.

A reader proceeds as follows. It locks LR, increments the counter, and releases
LR. After it performs its reads, it locks LR, decrements the counter, and releases LR. A
writer locks LW, then performs the following in an infinite loop. It locks LR, checks
to see if the read counter is 0; if so, it performs its write, releases LR, and breaks out
of the loop. Finally, it releases LW. In the code below we use the Java wait() and
notify() primitives to avoid the CPU cycles wasted in a busy wait.

1 // LR and LW are static members of type Object in the RW class.

2 // They serve as read and write locks. The static integer

3 // variable readCount in RW tracks the number of readers.

4 class Reader extends Thread {

5 public void run() {

6 while (true) {

7 synchronized (RW.LR) {

8 RW.readCount++;

9 }

10 System.out.println(RW.data);

11 synchronized (RW.LR) {

12 RW.readCount --;

13 RW.LR.notify();

14 }

15 Task.doSomeThingElse();

16 }

17 }

18 }

19

20 class Writer extends Thread {

21 public void run() {

22 while (true) {

23 synchronized (RW.LW) {

24 boolean done = false;

25 while (!done) {

26 synchronized (RW.LR) {

27 if (RW.readCount == 0) {

28 RW.data = new Date().toString();

29 done = true;

30 } else {

31 // use wait/notify to avoid busy waiting

32 try {

33 // protect against spurious notify, see

34 // stackoverflow.com do-spurious -wakeups-actually -happen

35 while ( RW.readCount != 0 ) {

36 RW.LR.wait();

37 }

38 } catch (InterruptedException e) {

39 System.out.println("InterruptedException in Writer wait");

40 }

41 }

42 }

43 }

44 }
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45 Task.doSomeThingElse();

46 }

47 }

48 }

Problem 21.1, pg. 96 : Design a system that can compute the ranks of ten billion web pages
in a reasonable amount of time.

Solution 21.1: Since the web graph can have billions of vertices and it is mostly
a sparse graph, it is best to represent the graph as an adjacency list. Building
the adjacency list representation of the graph may require a significant amount of
computation, depending upon how the information is collected. Usually, the graph
is constructed by downloading the pages on the web and extracting the hyperlink
information from the pages. Since the URL of a page can vary in length, it is often a
good idea to represent the URL by a hash code.

The most expensive part of the PageRank algorithm is the repeated matrix multi-
plication. Usually, it is not possible to keep the entire graph information in a single
machine’s RAM. Two approaches to solving this problem are described below.
− Disk-based sorting—we keep the column vector X in memory and load rows

one at a time. Processing Row i simply requires adding Ai, jX j to X j for each
j such that Ai, j is not zero. The advantage of this approach is that if the
column vector fits in RAM, the entire computation can be performed on a
single machine. This approach is slow because it uses a single machine and
relies on the disk.

− Partitioned graph—we use n servers and partition the vertices (web pages)
into n sets. This partition can be computed by partitioning the set of hash
codes in such a way that it is easy to determine which vertex maps to which
machine. Given this partitioning, each machine loads its vertices and their
outgoing edges into RAM. Each machine also loads the portion of the PageRank
vector corresponding to the vertices it is responsible for. Then each machine
does a local matrix multiplication. Some of the edges on each machine may
correspond to vertices that are owned by other machines. Hence the result
vector contains nonzero entries for vertices that are not owned by the local
machine. At the end of the local multiplication it needs to send updates to
other hosts so that these values can be correctly added up. The advantage of
this approach is that it can process arbitrarily large graphs.

PageRank runs in minutes on a single machine on the graph consisting of the six
million pages that constitute Wikipedia. It takes roughly 70 iterations to converge on
this graph. Anecdotally, PageRank takes roughly 200 iterations to converge on the
web graph.

Problem 21.2, pg. 97 : Design a system that will help its users find mileage runs.
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Solution 21.2: There are two distinct aspects to the design. The first is the user-facing
portion of the system. The second is the server backend that gets flight-price-distance
information and combines it with user input to generate the alerts.

We begin with the user-facing portion. For simplicity, we illustrate it with a web-
app, with the realization that the web-app could also be written as a desktop or
mobile app. The web-app has the following components: a login page, a manage
alerts page, a create an alert page, and a results page. For such a system we would like
defer to a single-sign-on login service such as that provided by Google or Facebook.
The management page would present login information, a list of alerts, and the
ability to create an alert.

One reasonable formulation of an alert is that it is an origin city, a target cpm,
and optionally, a date or range of travel dates. The results page would show flights
satisfying the constraints. Note that other formulations are also possible, such as
how frequently to check for flights, a set of destinations, a set of origins, etc.

The classical approach to implement the web-app front end is through dynami-
cally generated HTML on the server, e.g., through Java Server Pages. It can be made
more visually appealing and intuitive by making appropriate use of cascaded style
sheets, which are used for fonts, colors, and placements. The UI can be made more
efficient through the use of Javascript to autocomplete common fields, and make
attractive date pickers.

Modern practice is to eschew server-side HTML generation, and instead have
a single-page application, in which Javascript reads and writes JavaScript Object
Notation (JSON) objects to the server, and incrementally updates the single-page
based. The AngularJS framework supports this approach.

The web-app backend server has four components: gathering flight data, match-
ing user-generated alerts to this data, persisting data and alerts, and generating the
responses to browser initiated requests.

Flight data can be gathered via “scraping” or by subscribing to a flight data service.
Scraping refers to extraction of data from a website. It can be quite involved—some
of the issues are parsing the results from the website, filling in form data, and
running the Javascript that often populates the actual results on a page. Selenium
is a Java library that can programmatically interface to the Firefox browser, and is
appropriate for scraping sites that are rich in Javascript. Most flight data services
are paid. ITA software provides a very widely used paid aggregated flight data feed
service. The popular Kayak site provides an Extensible Markup Language (XML)
feed of recently discovered fares, which can be a good free alternative. Flight data
does not include the distance between airports, but there are websites which return
the distance between airport codes which can be used to generate the cpm for a flight.

There are a number of common web application frameworks—essentially libraries
that handle many common tasks—that can be used to generate the server. Java and
Python are very commonly used for writing the backend for web applications.

Persistence of data can be implemented through a database. Most web applica-
tion frameworks provide support for automating the process of reading and writing
objects from and to a database. Finally, web application frameworks can route
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incoming HTTP requests to appropriate code—this is through a configuration file
matching URLs to methods. The framework provides convenience methods for
accessing HTTP fields and writing results. Frameworks also provide HTTP templat-
ing mechanisms, wherein developers intersperse HTML with snippets of code that
dynamically add content to the HTML.

Web application frameworks typically implement cron functionality, wherein
specified functions are executed at a regular interval. This can be used to periodically
scrape data and check if the condition of an alert is matched by the data.

Finally, the web app can be deployed via a platform-as-a-service such as Amazon
Web Services, or built on an application-as-a-service such as Google AppEngine.
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Notation
To speak about notation as the only way that you can
guarantee structure of course is already very suspect.

— E. S. Parker

We use the following convention for symbols, unless the surrounding text specifies
otherwise:

i, j, k nonnegative array indices
f , g, h function
A k-dimensional array
L linked list or doubly linked list
S set
T tree
G graph
V set of vertices of a graph
E set of edges of a graph
u, v vertex-valued variables
e edge-valued variable
m,n number of elements in a collection
x, y real-valued variables
σ a permutation

Symbolism Meaning
(dk−1 . . . d0)r radix-r representation of a number, e.g., (1011)2

logb x logarithm of x to the base b
lg x logarithm of x to the base 2
|S| cardinality of set S
S \ T set difference, i.e., S ∩ T′, sometimes written as S − T
|x| absolute value of x
bxc greatest integer less than or equal to x
dxe smallest integer greater than or equal to x
〈a0, a1, . . . , an−1〉 sequence of n elements
ak, a = 〈a0, . . . , an−1〉 the sequence 〈ak, ak+1, . . . , an−1〉∑

R(k) f (k) sum of all f (k) such that relation R(k) is true∏
R(k) f (k) product of all f (k) such that relation R(k) is true

minR(k) f (k) minimum of all f (k) such that relation R(k) is true
maxR(k) f (k) maximum of all f (k) such that relation R(k) is true
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∑b
k=a f (k) shorthand for

∑
a≤k≤b f (k)∏b

k=a f (k) shorthand for
∏

a≤k≤b f (k)
{a | R(a)} set of all a such that the relation R(a) = true
[l, r] closed interval: {x | l ≤ x ≤ r}
(l, r) open interval: {x | l < x < r}
[l, r) {x | l ≤ x < r}
(l, r] {x | l < x ≤ r}
{a, b, . . . } well-defined collection of elements, i.e., a set
Ai or A[i] the i-th element of one-dimensional array A
A[i : j] subarray of one-dimensional array A consisting of ele-

ments at indices i to j inclusive
A[i][ j] or A[i, j] the element in i-th row and j-th column of 2D array A
A[i1 : i2][ j1 : j2] 2D subarray of 2D array A consisting of elements from

i1-th to i2-th rows and from j1-th to j2-th column, inclusive(n
k

)
binomial coefficient: number of ways of choosing k ele-
ments from a set of n items

n! n-factorial, the product of the integers from 1 to n, inclu-
sive

O

(
f (n)

)
big-oh complexity of f (n), asymptotic upper bound

x mod y mod function
x ⊕ y bitwise-XOR function
x ≈ y x is approximately equal to y
null pointer value reserved for indicating that the pointer

does not refer to a valid address
∅ empty set
∞ infinity: Informally, a number larger than any number.

Rigorously, a set is infinite iff it can be mapped one-to-one
to a proper subset of itself.

Z the set of integers {. . . ,−2,−1, 0, 1, 2, 3, . . . }
Z

+ the set of nonnegative integers {0, 1, 2, 3, . . . }
Zn the set {0, 1, 2, 3, . . . ,n − 1}
R the set of real numbers
R

+ the set of nonnegative real numbers
x� y much less than
x� y much greater than
A 7→ B function mapping from domain A to range B
⇒ logical implication
iff if and only if
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2D array, 81, 90, 153, 156, 167, 180
2D subarray, 180
O(1) space, 3, 11, 13, 24, 25, 39, 47, 48, 50, 52, 53,

59, 60, 71, 80, 109, 110, 113, 116, 117,
119, 121, 123, 125, 130, 131, 144, 146,
149, 164

0-1 knapsack problem, 82, 158

abstract analysis patterns, 22, 33
abstract data type, see ADT
adjacency list, 89, 89, 175
adjacency matrix, 89, 89
ADT, 25, 25, 26, 54, 55
AKS primality testing, 39
algorithm design patterns, 22, 27
all pairs shortest paths, 91
alternating sequence, 161
amortized, 54
amortized analysis, 46, 68
API, 26, 26, 56, 127
application programming interface, see API
approximation algorithm, 40
arbitrage, 36, 37
array, 1–3, 11, 13, 23, 23, 24, 25, 28, 30, 31, 36, 38,

46, 46, 47, 48, 54–56, 65–68, 71, 72,
74, 75, 79, 80, 83, 86, 90, 104, 109,
111, 113, 127, 132, 135, 136, 138, 140,
142, 143, 149, 158–161, 164, 165, 169

bit, see bit array
deletion from, 46

ascending sequence, 161
AVL tree, 27

backtracking, 153
balanced BST, 62
balanced tree, 129

height of, 129
Bellman-Ford algorithm, 37
BFS, 3, 89, 89, 147, 167, 169–171
BFS tree, 167

binary search, 3, 13, 20, 40, 64, 64, 65–67, 71, 78,
85, 100, 106, 136, 137, 142, 160, 161

binary search tree, 3, 23, 23, 26, see BST, 68
AVL tree, 27
deletion from, 23, 27
height of, 74, 75, 149
red-black tree, 27, 74

binary tree, see also binary search tree, 23, 26, 27,
55, 57–62, 74, 89, 125–131, 145, 162

complete, 58, 62
full, 58
height of, 23, 26, 27, 58–60, 128, 131
perfect, 58, 126

binomial coefficient, 180
bipartite graph, 91
bit array, 20, 138, 151
bitonic sequence, 161, 161
Bloom filter, 23
Boyer-Moore algorithm, 36
breadth-first search, see BFS
BST, 12, 27, 27, 30, 47, 69, 71, 74, 75, 145–149
busy wait, 172, 174

caching, 37, 38
capacity constraint, 82
case analysis, 33, 34, 40, 99
central processing unit, see CPU
chessboard, 29, 154, 155

mutilated, 29
child, 58, 74, 89, 130, 162
circular queue, see also queue
closed interval, 27, 73, 100, 144, 180
CNF-SAT, 40, 40
code

Huffman, 84, 162–164
coin changing, 84
coloring, 91
combination, 30, 81, 155, 156
complete binary tree, 58, 58, 59, 62

height of, 58
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complex number, 43
complexity analysis, 38
concrete example, 33, 33, 108
concurrency, 4, 20
conjunctive normal form satisfiability, see CNF-

SAT
connected component, 88, 88
connected directed graph, 88
connected graph, 33
connected undirected graph, 88, 88, 91
connected vertices, 88, 88
constraint, 1, 25, 91, 95, 146, 150, 151

capacity, 82
stacking, 76, 149, 151

convex sequence, 161
counting sort, 47, 47, 71, 139
CPU, 34, 38

DAG, 87, 87, 88
data structure, 22
data structure patterns, 22, 22
database, 37, 38, 176
deadlock, 94
decomposition, 37
decrease and conquer, 78, 135
degree

of a polynomial, 39, 165
deletion

from arrays, 46
from binary search trees, 23, 27
from doubly linked lists, 55
from hash tables, 23, 68
from heaps, 23
from linked list, 23
from max-heaps, 62
from priority queues, 26
from queues, 23
from stacks, 23

depth
of a node in a binary search tree, 147
of a node in a binary tree, 23, 58, 58, 59
of the function call stack, 39, 153

depth-first search, 39, see DFS
deque, 55
dequeue, 3, 55, 56, 126, 127
DFS, 89, 89, 167–171
diameter

of a ring, 76
Dijkstra’s algorithm, 4
directed acyclic graph, see DAG, 88
directed graph, 87, see also directed acyclic graph,

see also graph, 87, 88, 91, 170, 171
connected directed graph, 88
weakly connected graph, 88

discovery time, 89

distributed memory, 93, 94
distribution

of the inputs, 39
of the numbers, 38

divide-and-conquer, 2, 3, 12, 28, 29, 30, 36, 77–80
divisor, 108

greatest common divisor, 44
double-ended queue, see deque
doubly linked list, 23, see also linked list, 25, 51,

51, 55, 118, 179
deletion from, 55

DP, 12, 30, 30, 40, 79–81, 84, 155, 156, 158
dynamic k-th largest, 23
dynamic programming, 3, see DP, 30, 79

edge, 37, 78, 87, 87, 88, 89, 91, 100, 171, 179
capacity of, 91
weight of, 37

edge set, 89, 91
efficient frontier, 32, 32
elimination, 65
enqueue, 55, 126, 147
Extensible Markup Language, see XML
extract-max, 62
extract-min, 132, 162

fast Fourier Transform, see FFT
FFT, 165
Fibonacci heap, 22
Fibonacci number, 79
finishing time, 89, 171
first-in, first-out, 25, see also queue, 55
fractional knapsack problem, 158
free tree, 89, 89
full binary tree, 58, 58
function

hash, see hash function
recursive, 28, 149

garbage collection, 93
GCD, 44, 45, 108, 109
generalization principle, 30
global variable, 129
graph, 36, 37, 39, 78, 87, see also directed graph,

87, 88, 89, see also tree
bipartite, 91

graph modeling, 33, 36, 90
graphical user interfaces, see GUI
greatest common divisor, see GCD
greedy, 28, 31, 31, 84
greedy algorithm, 4, 19
GUI, 93

hash code, 68, 68, 69, 140, 175
hash function, 12, 23, 26, 27, 68, 69, 140, 141
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hash table, 3, 20, 22, 23, 23, 26, 27, 30, 49, 68, 69,
119, 128, 139, 140, 158, 159, 170, 173

deletion from, 23, 68
lookup of, 22, 23, 26, 68, 140

head
of a deque, 55
of a linked list, 51, 52, 117, 119, 120
of a postings list, 53, 121
of a queue, 55, 126–128

heap, 22, 23, 23, 26, 62, 62, 72, 79, 134
Fibonacci, 22
insertion of, 134
max-heap, 62, 72
min-heap, 62, 72
priority queue, 26

heapsort, 71
height

of a balanced tree, 129
of a binary search tree, 74, 75, 149
of a binary tree, 23, 26, 27, 58, 58, 59, 60,

128, 131
of a building, 86, 165
of a complete binary tree, 58
of a event rectangle, 72
of a line segment, 27
of a perfect binary tree, 58
of a rectangle, 166
of a stack, 128, 129

HTML, 176, 177
HTTP, 177
Huffman code, 84, 162–164
Huffman tree, 163

I/O, 19, 132
IDE, 11, 13
in-place sort, 71
input/output, see I/O
integral development environment, see IDE
Internet Protocol, see IP
interval tree, 23
intractability, 40, 40
invariant, 28, 31, 85, 134
inverted index, 72
IP, 67, 67, 138
iterative refinement, 33, 35

JavaScript Object Notation, see JSON
JSON, 176

knapsack problem
0-1, 82, 158
fractional, 158

last-in, first-out, 25, see also stack, 54
LCA, 60, 60, 129

leaf, 23, 58, 59, 162, 163
left child, 57, 58, 89, 128–131, 146, 147
left subtree, 57–59, 74, 145–148
length

of a sequence, 134
level

of a tree, 58
line segment, 27

height of, 27
linear programming, 39

simplex algorithm for, 39
linked list, 23, 25, 51, 179
list, 23, see also singly linked list, 52, 54, 55, 68, 71,

117, 119
postings, 53, 121, 122

livelock, 94
load

of a hash table, 68
lock

deadlock, 94
livelock, 94

longest alternating subsequence, 161
longest bitonic subsequence, 161
longest convex subsequence, 161
longest nondecreasing subsequence, 82, 83, 83,

159, 160
longest weakly alternating subsequence, 161
lowest common ancestor, see LCA
LSB, 119

matching, 91
maximum weighted, 91
of strings, 23, 28, 29, 49, 82

matrix, 89, 96, 156
adjacency, 89
Boolean, 37
multiplication of, 93, 175

matrix multiplication, 93, 175
max-heap, 62, 72, 132–134

deletion from, 23, 62
maximum flow, 91, 91
maximum weighted matching, 91
median, 35, 63, 134
merge sort, 71, 77, 78
min-heap, 23, 26, 38, 62, 71, 72, 131, 134, 173

in Huffman’s algorithm, 162
minimum spanning tree, see MST, 91
Morris traversal, 59, 60
MSB, 138
MST, 78, 78
multicore, 93
mutex, 94
mutilated chessboard, 29

network, 7, 93
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network bandwidth, 38
network session, 48

network bandwidth, 38
network session, 48
node, 26, 27, 55, 57–61, 69, 74, 89, 100, 125–131,

145–148, 162
nondecreasing subsequence, 160, 161
NP, 40
NP-complete, 77
NP-hard, 84

open interval, 180
operating system, see OS
ordered pair, 140
ordered tree, 89, 89
OS, 4, 96
overflow

integer, 65
overlapping intervals, 144

parallel algorithm, 40
parallelism, 37, 38, 93, 94
parent-child relationship, 58, 89
partition, 69, 78, 138, 155, 175
path, 87

shortest, see shortest paths
PDF, 9
perfect binary tree, 58, 58, 59, 126

height of, 58
permutation, 113, 155

random, 48
Portable Document Format, see PDF
postings list, 53, 53, 121, 122
power set, 76, 76, 77, 151
prefix

of a sequence, 117
of a string, 84

prefix sum, 36
primality, see prime
prime, 39, 74
priority queue, 26, 26

deletion from, 26
production sequence, 90, 91, 170

queue, 23, 25, 26, 55, 55, 56, 125–128, 147, 167,
169, 170

priority, 26
quicksort, 3, 24, 39, 46, 71, 77, 78, 80, 81

race, 94
radix sort, 72
RAM, 38, 62, 63, 67, 104, 131, 132, 138, 175
random access memory, see RAM
random number generator, 44, 48, 107, 113
random permutation, 48

randomization, 68
randomized algorithm, 39
reachable, 87, 89
recursion, 12, 28, 29–31, 51, 55, 60, 79, 108, 117,

118, 125, 155
recursive function, 28, 149
red-black tree, 27, 74
reduction, 33, 36
regular expression, 29
rehashing, 68
Reverse Polish notation, 25
right child, 57–59, 89, 128–131, 146, 147
right subtree, 57–59, 74, 131, 145, 146, 148
rolling hash, 69
root, 55, 57–61, 74, 89, 125, 128–131, 133, 145–147,

149, 162, 163
rooted tree, 89, 89

scheduling, 92, 171
searching

binary search, see binary search
sequence, 161

alternating, 161
ascending, 161
bitonic, 161
convex, 161
production, 90, 91, 170
weakly alternating, 161

shared memory, 93, 93, 94
Short Message Service, see SMS
shortest path, 90, 168

Dijkstra’s algorithm for, 4
shortest path, unweighted case, 167
shortest paths, 40, 91
shortest paths, unweighted edges, 170
simplex algorithm, 39
singly linked list, 23, 25, 51, 51, 52, 118, 119
sinks, 88
SMS, 94
social network, 13
sorting, 27, 28, 35, 38, 39, 46, 66, 71, 72, 77, 132,

143
counting sort, 47, 71, 139
heapsort, 71
in-place, 71
in-place sort, 71
merge sort, 71, 77, 78
quicksort, 24, 39, 46, 71, 77, 78, 80, 81
radix sort, 72
stable, 71
stable sort, 71

sources, 88
space complexity, 2
spanning tree, 89, see also minimum spanning

tree
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SQL, 16
square root, 39
stable sort, 71
stack, 23, 25, 32, 54, 54, 60, 119, 123–125, 167, 169

height of, 128, 129
stacking constraint, 76, 149, 151
Standard Template Library, see STL
starvation, 94
STL, 74
streaming

algorithm, 39
fashion input, 63

string, 23, 23, 27, 29, 35, 36, 44, 49, 50, 69, 77, 82,
84, 85, 90, 91, 94, 106, 115, 116, 138,
139, 153, 158, 159, 162, 170, 173

string matching, 23, 28, 29, 49, 82
Boyer-Moore algorithm for, 36

strongly connected directed graph, 88
Structured Query Language, see SQL
subarray, 2, 36, 46, 80, 81, 109, 110, 113, 135, 149,

165
subsequence, 160, 161

longest alternating, 161
longest bitonic, 161
longest convex, 161
longest nondecreasing, 82, 83, 159, 160
longest weakly alternating, 161
nondecreasing, 160, 161

substring, 158
subtree, 58, 128, 129, 146, 147, 149
Sudoku, 77, 153
system design patterns, 22

tail
of a deque, 55
of a linked list, 51, 119, 120
of a queue, 55, 127, 128

tail recursion, 78
tail recursive, 79, 119
time complexity, 2, 12
timestamp, 26
topological order, 172
topological ordering, 88, 171
tree, 89, 89

AVL, 27
BFS, 167
binary, see binary tree
binary search, see binary search tree
free, 89
Huffman, 163
interval, 23
ordered, 89
red-black, 27, 74
rooted, 89

triomino, 29, 30

UI, 19, 93
undirected graph, 88, 88, 89, 91, 100, 167, 169, 170

weighted, 78
Uniform Resource Locators, see URL
URL, 9, 82, 175
user interface, see UI

vertex, 37, 78, 87, 87, 88, 89, 91, 167, 170, 171, 175,
179

connected, 88

weakly alternating sequence, 161
weakly connected graph, 88
weighted undirected graph, 78
width, 43

XML, 176
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